
1

Service Migration Optimization for System
Overhead Minimization in VECNs via Deep

Reinforcement Learning
Yuan Yuan, Bin Yang, Wei Su, Jie Ma, Yihua Peng, Qi Liu, Tarik Taleb

Abstract—In vehicular edge computing networks (VECNs),
service migration among edge servers is critical to address the
challenge of service interruption caused by high mobility of
vehicles and limited coverage of each edge server. In this paper,
we tackle this challenge by optimizing service migration among
edge servers through a joint management of resource scheduling
and dynamic server selection. Specifically, we aim to minimize
system overhead consisting of system time and energy consump-
tion taking account for resource scheduling and dynamic server
selection, which is formulated as a constrained optimization prob-
lem. To solve this optimization problem, we propose a learning-
driven joint resource scheduling and dynamic server selection
strategy (LD-JRS3) based on deep reinforcement learning. Under
the LD-JRS3 strategy, we first model joint resource scheduling
and dynamic server selection as a Markov Decision Process
(MDP). Then, we adopt a Recurrent Neural Network (RNN)-
empowered feedback mechanism based on historical information
to achieve the optimal system performance. We fully consider the
advantages of the Soft Actor-Critic (SAC) algorithm to obtain
the optimal decision (i.e., computational resources allocation
and servers selection). Notably, we employ an improved SAC
algorithm, which takes into account prioritized experience replay
and automatic tuning of temperature parameters. Extensive
simulation results are presented to verify the effectiveness of our
proposed LD-JRS3 algorithm, and also to illustrate the advantage
of our algorithm on improving the time consumption and energy
consumption compared with the baseline schemes. LD-JRS3 has
19%, 24% and 11% higher utility values than DDRN, DQN-
based and MAB-based systems, respectively.

Index Terms—Vehicular Networks, Service Migration, Multi-
access Edge Computing, Deep Reinforcement Learning, Resource
Scheduling, Recurrent Neural Network.

This work was supported in part by the National Key Research and Develop-
ment Project of China under Grant 2022YFB2901603; in part by the Ministry
of Education Innovation Group Joint Fund under Grant 8091B042222; in part
by the National Natural Science Foundation of China under Grant 62372076;
in part by the Natural Science Foundation of Anhui Province under Grant
KJ2021ZD0128, KJ2021B01; in part by the Anhui Talent Project under
Grant DTR2023051; in part by ICTFICIAL Oy, Finland; and in part by the
European Union’s HE Research and Innovation Program HORIZON-JUSNS-
2023 through the 6G-Path Project under Grant 101139172. (Corresponding
authors: Wei Su; Bin Yang.)

Y. Yuan, W. Su, J. Ma and Y. Peng are with the School of Electronic
and Information Engineering, Beijing Jiaotong University, Beijing, China.
E-mail: yuan.yuan@bjtu.edu.cn, wsu@bjtu.edu.cn, 20111028@bjtu.edu.cn,
22110024@bjtu.edu.cn.

B. Yang is with the School of Computer and Information Engineering,
Chuzhou University, Chuzhou, Anhui, China. E-mail: yangbinchi@gmail.com.

Q. Liu is with the Smart City Research Institute of China Unicom, Beijing,
China. E-mail: liuqi49@chinaunicom.cn.

Tarik Taleb is with the Faculty of Electrical Engineering and Information
Technology, Ruhr University Bochum, Bochum 44801, Germany. E-mail:
tarik.taleb@rub.de.

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

I. INTRODUCTION

THE vehicular edge computing networks (VECNs) are
a promising network paradigm by integrating mobile

edge computing (MEC) into vehicular networks, where edge
computing servers are deployed in close proximity to vehicles
to provide computing and caching services [1]–[3]. Such
networks can effectively reduce transmission latency and en-
hance real-time data processing capacity, making it particularly
suitable for vehicular applications that require fast response
times, such as augmented reality (AR), virtual reality (VR),
extended reality (XR), intelligent transportation systems, and
the Internet of Vehicles (IoV) [4]. The mobility of vehicles
and the limited coverage of each edge server equipped at a
base station can result in service interruption and degrade
the quality of service (QoS) for vehicles. Service migration
has great potential to address the negative effects through
migrating services from an edge server to another according
to the mobility of vehicles and dynamically environmental
characteristics [5]–[7]. Thus, it is critical to explore the dy-
namic service migration scheme for an efficient support of
IoV applications in VECN [9].

Existing works on service migration works mainly employ
traditional mathematical methods [10]–[13] and learning algo-
rithms [14]–[21] to optimize system performance (see Section
II for details). Note that these works mainly consider that the
computational tasks have the same priority, and explore the
minimization of time and energy consumption separately. In
practice scenarios, the tasks usually have different priorities.
For example, advanced smart driving vehicles should be allo-
cated more resources to meet their requirements of computa-
tion, storage, and communication. It is essential to balance the
time and energy consumption by a joint optimization on these
two metrics. Furthermore, the dynamic information of vehicles
and the environment cannot be entirely observed, and thus
it is necessary to utilize historical time-series data to predict
future vehicle states using a mathematical framework like the
Recurrent Neural Network (RNN).

To address the above issues, this paper explores the service
migration in the VECN to guarantee the trade-off between
time consumption and energy consumption under the scenario
with different task priorities. Service migration is essentially
a dynamic problem, and server selection is an important
sub-problem of service migration. Thus, the existing static
strategies are not applicable to the dynamic problem. We
then propose a learning-driven joint resource scheduling and

2

TABLE I
COMPREHENSIVE COMPARATIVE ANALYSIS OF THE DYNAMIC SERVICE MIGRATION

Comparison
Metrics

[10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] The proposed
scheme

Optimization
Method (M) (M) (M) (M) (L) (L) (L) (L) (L) (L) (L) (L) (L)

Realistic
Dataset − − ✓ − − − ✓ − − ✓ − ✓ ✓

Resource
Scheduling − ✓ ✓ − ✓ − − ✓ ✓ − − − ✓

Objective of
Time ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Objective of
Energy − − − ✓ − ✓ − − − − ✓ ✓ ✓

Priority of
Tasks − − − − − − − ✓ ✓ − − − ✓

1 Optimization Method: (M) represents the Optimization scheme based on mathematical algorithm. (L) represents the Optimization scheme based on learning algorithm.
2 Symbol ✓ indicates a high relevance. Symbol − indicates a low relevance.

dynamic server selecting (LD-JRS3) strategy to achieve the
minimum long-term system overhead. This scheme employs
an RNN-based feedback strategy and a Markov decision
process (MDP)-based reinforcement learning strategy. Firstly,
the optimal actions (i.e., the number of allocated blocks of
computational resources and the index of selected service
servers) are obtained through reinforcement learning. Further,
the feedback strategy is used to determine different priorities
so that network resources (i.e., channel bandwidth) and edge
server computational resources are provided proportionally
according to the priority coefficients. Notably, we employ an
improved SAC algorithm as a reinforcement learning solution,
which takes into account prioritized experience replay and
automatic tuning of temperature parameters. It should be noted
that we validate the proposed solution through convergence
and performance comparisons.

The main contributions of this paper can be summarized as
follows.

• We define a system overhead function consisting of
system time and energy consumption. We formulate the
dynamic service migration process as an optimization
problem with the aim of minimizing the long-term cu-
mulative system overhead.

• To solve this optimization problem, we model joint
resource scheduling and dynamic server selection as
an MDP involving the constraints of transmission link
rate and priority matching. We then propose a RNN-
empowered feedback mechanism based on historical in-
formation.

• We further propose a LD-JRS3 strategy to solve this
optimization problem, which fully considers the advan-
tages of the SAC algorithm to obtain the optimal decision
for achieving the minimization of the long-term system
overhead.

• Extensive simulation results are presented to validate our
proposed LD-JRS3 strategy, and also to illustrate that
our LD-JRS3 strategy outperforms the baseline scheme
in system performance improvements. The simulation
results show that LD-JRS3 is able to obtain a high average
system utility, which is 19%, 24% and 11% higher than

DDRN, DQN-based and MAB-based, respectively.

The rest of the paper is organized as follows. Section
II summarizes the related works. Section III introduces the
system model of the VECN and formulates the problem.
Section IV constructs the optimization problem as an MDP
and propose the RNN enabled LD-JRS3 strategy to solve
it. Section V provides extensive simulation results. Finally,
Section VI concludes this paper.

II. RELATED WORK

Available service migration works mainly employ tradi-
tional mathematical methods [10]–[13] and learning algo-
rithms [14]–[21] to optimize system performance.

For the traditional mathematical methods, the authors in
[10] present a Lyapunov optimization-based algorithm that
dynamically optimizes service migration and request routing
to improve network performance and reduce operational costs
in multicell mobile-edge environments. The authors in [11]
develop a framework to optimize mobile edge computing by
integrating service migration and resource allocation across
multiple cells, enhancing network efficiency and user service
continuity in dynamic environments. The authors in [12]
develop an algorithm to optimize network path selection, bal-
ancing service quality and cost-efficiency to facilitate seamless
service migration in vehicular networks. The authors in [13]
propose a novel energy-efficient online algorithm for service
migration in dense cellular networks, reducing average energy
consumption and enhancing service latency without requiring
user trajectory prediction.

As for learning algorithms, the authors in [14] explore an
innovative strategy to enhance the efficiency of intelligent and
connected vehicles by optimizing service migration and mo-
bility planning to better manage resource demands in vehicular
networks. The authors in [15] introduce a novel network in box
(NIB) task migration method optimized through the strength
Pareto evolutionary algorithm (SPEA), significantly enhancing
the balance between energy consumption and time cost during
service migration for the Internet of Vehicles in a 6G context.
The authors in [16] introduce a bi-objective optimization

3

Service queueService queue

Service queueService queue

Service queueService queue

Service queueService queue

Service queueService queue

Heavy load

Light load

Empty load

Wireless link

Vehicles

Heavy load

Light load

Empty load

Wireless link

Vehicles

Service Migration

Movement

Micro base station

Core base station

Edge server

Service queue

Service queue

Service queue

Service queue

Service queue

Heavy load

Light load

Empty load

Wireless link

Vehicles

Service Migration

Movement

Micro base station

Core base station

Edge server

Fig. 1. Vehicular edge computing network scenario.

approach using lightweight imitation learning to facilitate effi-
cient, real-time service migration in edge networks, optimizing
both execution latency and cost. The authors in [17] propose a
dual approach combining Convolutional Neural Networks and
Genetic Algorithms to predict vehicular movements and opti-
mize service migration in vehicular networks, aiming to mini-
mize latency and enhance network performance by adaptively
relocating services closer to users. The authors in [18] propose
an asynchronous deep reinforcement learning framework that
optimizes collaborative computing and resource distribution
for vehicular services, showcasing improvements in system
utility and service performance. The authors in [19] reformu-
late the microservice coordination problem using the Markov
decision process framework, and then propose a reinforcement
learning-based online microservice coordination algorithm to
learn the optimal policy that reduces the overall service latency
at a lower cost. The authors in [20], in order to overcome the
unavailability of future information and the unknown nature
of system dynamics, formulate the dynamic service placement
problem as a contextual multi-armed bandit (MAB) problem,
and then propose an online learning algorithm based on
Thompson sampling to explore dynamic MEC environments,
which further assists the user in making adaptive service
placement decisions. The authors in [21] propose a deep
recurrent actor-critic model for managing service migrations
in mobile edge computing environments, effectively handling
the challenges of incomplete system information and dynamic
conditions through a novel learning-driven approach.

The above studies on service migration, which mainly con-
centrate on optimizing time and energy consumption through
centralized or distributed management, are summarized in
Table I.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

As illustrated in Fig. 1, we consider a VECN for service
migration consisting of a core base station (CBS) equipped
with a regional center server, M micro base stations (MBSs)
each of which is equipped with an edge server, and N
intelligent connected vehicles (ICVs). The CBS plays a pivotal
role in aggregating both the configuration specifics of the
network and the dynamic data of its surrounding environment,
subsequently sharing this intelligence with the MBS. The
edge server, facilitated by the CBS, equips ICVs with service
migration policies utilizing learning algorithms. An MBS
equiped with an edge server is called as a service node (SN).
We consider that each edge server is capable of hosting an
application instance to cater to the service demands from the
ICV. The ICV sends a request to the SN through the cellular
network, which responds to the request and forwards it to the
application instance deployed by the edge server, and then
returns the computational result to the ICV. The orthogonal
frequency division multiple access (OFDMA) technique is
adopted to support multiple access, where cellular links use
different sub-channels and thus there is no interference among
them. In addition, all wireless channels encounter additive
white Gaussian noise with variance σ2. We assume that the
size of each time-critical task is F . Note that ICV services
have different priorities denoted by Vn(t). Here, we propose a
feedback mechanism, i.e., the priority of ICV services depends
on the residence time in the area covered by a single MBS. We
consider fast-moving or frequent cross-domain switching users
(i.e., users with short residence time) as higher intelligence
level users. We give more bandwidth resources and computing
resources to the users with higher intelligence. The identifier
of ICV task priority is given by

Vn(t) =

{
1, if T res

n (t) ≥ Tth

0.5, otherwise
(1)

where T res
n (t) represents the residence time in the area covered

by a single MBS, and Tth represents the time threshold of
QoS. Among them, different priorities correspond to different
computational capabilities and channel bandwidth levels.

In the VECN, we consider a time-slotted system, where
the vehicular moving and task requests change only once in
a time slot. We then utilize service migration strategies to
meet the requirements of time-critical applications such as
smart driving. Edge servers are considered as core network
entities that provide powerful compute and storage capabilities
to users. We need to propose a service migration scheme
to trade-off the energy consumption and time consumption
of the system. The VECN can sense the time and system
energy consumption, and then jointly considers task priority
and resource allocation to achieve service migration.

The symbols used in this paper are described in Table II.

B. Performance Model

1) Time Consumption Model: System time consumption
T c
n(t) is defined as

T c
n(t) = Tmig

n (t) + T com
n (t) + T tra

n (t) (2)

4

TABLE II
DEFINITION OF MATHEMATICAL SYMBOLS

Symbol Definition
N The number of intelligent connected vehicles.
M The number of micro base stations.
F The size of each time-critical task.

T res
n (t)

The residence time in the area covered by micro base
stations.

T c
n(t) System time consumption.

T
mig
n (t) The time consumption of migration.
T com
n (t) The time consumption of computation.

T tra
n (t)

The sum of transmission latency among wireless
networks and wires networks.

T a
n(t) The access latency of wireless networks.
T b
n(t) The backhaul latency of wires networks.

F
app
n (t) The size of the service instance to be migrated.
F off
n (t) The size of the offloading task.
Fload The workload of edge server.
S loc
n (t) The local server of user n.

Sser
n (t) The serving server of user n.
Im(t) Migration identifier for service node m.
Vn(t) Service priority identifier for user n.
∆

mig
n (t) The number of hops on the migration path.

∆back
n (t) The number of hops on the backhaul path.

hnm
The Rayleigh channel gain between user n and service

node m.
Rn(t) The downlink transmission rate for user n.
p

sup
n (t) The power supplied to the user n by the antenna.
Zn(t) The number of resource blocks assigned to user n.
E

mig
n (t) The energy consumption for migration action.

E
pro
n (t) The energy consumption of migration process.
Etot

n (t) The total energy consumption for each user n.
K tot

n (t) The overhead function of user n in time slot t.
B The channel bandwidth of the base station.
B0 The size of a unit of channel bandwidth.
Bw The network bandwidth on the migration path.

f0
The computational resources contained in a unit

resource block.
f

sup
n (t) The computational capability of the server for user n.

p
The transmit power coefficient of the edge server that

initiated the service migration.
ρ The processing density in CPU.
βn The ratio of resource allocation.
fe The capability of edge server.
RT The threshold of transmission rate.
Tth The time threshold of QoS.
ωT The unit price of time related overhead.
ωE The unit price of energy related overhead.
ψn The decision on server selecting.
I(t) The identifier of service migration.
Kave The average system overhead.
Uave The average system utility.

where Tmig
n (t), T com

n (t) and T tra
n (t) represent time consumption

of migration, computation and communication, respectively.
For the time consumption of migration, Tmig

n (t) is the
latency that a running application instance is migrated from
the current edge server to another edge server. Generally,
migration latency is caused by the service interruption during
the data transmission process. Migration latency changes with
transmission distance, network performance, data volume, and
system load. In this paper, we focus on the data transmission

latency and network latency of backhaul links in wired net-
works. Therefore, Tmig

n (t) is given by

Tmig
n (t) =

{
0, ∆mig

n (t) = 0

F app
n (t)/Bw + µA∆

mig
n (t), ∆mig

n (t) ̸= 0
(3)

where ∆mig
n (t)represents the number of hops on the migration

path, µA is the coefficient of migration latency, BW is the
network bandwidth on the migration path, and F app

n (t) is the
size of the service instance to be migrated. In our proposed
scenario, the user’s local server is not necessarily the serving
server. Relay hops refer to the number of node hops that need
to be traversed from the serving server to reach the local server
[21].

As for the time consumption of computation, T com
n (t) is

defined as the latency required by the offloaded computing-
intensive task on the server, which is affected by the number
of cycles required for computational task execution and the
computational resources provided by the server. Here, the time
consumption T com

n (t) can be expressed as

T com
n (t) =

(F + Fload)ρ

βnfe
(4)

where F is the size of computational task, Fload is the workload
of edge server, ρ is the processing density in CPU, βn is the
ratio of resource allocation, fe is the capability of edge server.

As for the time consumption of communication, T tra
n (t) is

defined as the sum of transmission latency among wireless
networks and wired networks, which is expressed as

T tra
n (t) = T a

n(t) + T b
n(t) (5)

where T a
n(t) is the access latency of wireless networks, and

T b
n(t) is the backhaul latency of wired networks.
The access latency of wireless networks includes uplink and

downlink cases. Note that the uplink case focuses on analyzing
the impact of offloading data. The downlink is used to transmit
the results of the computation, which can be ignored due to
the fact that the amount of data is particularly small. Among
them, access latency T a

n(t) can be expressed as

T a
n(t) =

F off
n (t)

Rn(t)
(6)

where F off
n (t) is the file size of the offloading task, and Rn(t)

is the uplink transmission rate.
We consider the Rayleigh channel model in small-scale fad-

ing, i.e., we assume that the received signal is a sum of a large
number of independent and identically distributed multipath
components that can be approximated to obey independent
Gaussian distributions. In our OFDMA system, hnm denotes
the Rayleigh channel coefficients with Gaussian distribution.
The uplink transmission rate Rn(t) is determined by transmit
power, channel gain, channel bandwidth, and noise power,
which can be expressed as

Rn(t) = B log2

(
1 +

psup
n (t)h2nm
σ2

)
(7)

where B is the channel bandwidth of the base station, psup
n (t)

is the power provided by the antenna to the user n, hnm is

5

the channel gain between user n and service node m, and σ2

is noise power. B is given by

B =

{
B0, if Vn(t) = 1,
1
2B0, otherwise.

(8)

Here, B0 is the size of a unit of channel bandwidth. Since
we consider an orthogonal frequency-division multiple access
(OFDMA) system, there is no channel interference. A signal
received at each user can be successfully decoded if and only
if the transmission rate from BS to the user is greater than
some threshold value RT , i.e.,

Rn(t) ≥ RT (9)

where Rn(t) represents the downlink transmission rate for user
n.

The backhaul latency of wired networks is generated by the
multi-hop transmission between edge servers due to the fact
that the server providing service is not the local server. The
backhaul latency depends on the distance of transmission, the
amount of data of the offloading task, and the transmission
latency of the computational results. Moreover, the amount of
data used to computational results is usually small, so this part
of the latency can be ignored. Among them, access latency
T b
n(t) can be expressed as

T b
n(t) =

{
0, ∆back

n (t) = 0

F off
n (t)/Bw + µB∆

back
n (t), ∆back

n (t) ̸= 0
(10)

where µB is the coefficient of migration latency, BW is the
network bandwidth on the migration path, and F off

n (t) is the
size of the service instance to be migrated.

In our network model, the channel bandwidth and server
computational capability can be flexibly controlled through
dynamic adjusting the task priority and the number of resource
blocks. The computational capability of the server for user n
is given by

f sup
n (t) = Vn(t)Zn(t)f0 (11)

where Vn(t) is the task prioritization of user n, Zn(t) is the
number of resource blocks assigned to user n, and f0 is the
computational resources contained in a unit resource block.
The number of resource blocks allocated to all N users does
not exceed G, and then

N∑
n=1

Zn(t) ≤ G. (12)

Then, the the ratio of resource allocation can be expressed as

βn =
Vn(t)Zn(t)

G
. (13)

2) Energy Consumption Model: The process of service
migration likewise incurs a certain amount of energy overhead
due to compute, network, storage, transmission, etc. These
energy expenses can be divided into data transmission energy,
service computing energy, and system storage energy. Among
them, data transmission energy consumption is closely related
to data volume, transmission distance, network topology and
transmission protocol. Service computing energy consumption

refers to the task that after service migration, the new ser-
vice server needs to start and configure new computational
resources. The migration process may also need to perform
some extra computational tasks, such as data decompression,
configuration update, etc., which will also generate energy
overhead. The energy consumption of system storage means
that service migration involves the migration or replication
of data storage, and the storage system often generates cor-
responding energy consumption. Typically, the percentage of
this energy consumption is relatively low.

Due to the large number and wide range of categories
involved in the energy overhead, it is often difficult to give pre-
cise expressions for representation. In this paper, we simplify
the energy consumption generated during service migration
into an approximate expression consisting of migration action
energy consumption Eact

n (t) and migration process energy
consumption Epro

n (t), which is expressed as

Etot
n (t) = Eact

n (t) + Epro
n (t). (14)

Here, Eact
n (t) is given by

Eact
n (t) = I(t)Emig

n (t) (15)

where Emig
n (t) represents the energy consumption to complete

one migration action, and I(t) represents the identifier of
service migration. When ∆mig

n (t) ̸= 0, I(t) = 1, and I(t) = 0,
otherwise. Epro

n (t) is given by

Epro
n (t) = pTmig

n (t) (16)

where p is the transmit power coefficient of the edge server
that initiated the service migration, and Tmig

n (t) represents the
time consumption of migration.

C. Problem Formulation

Our objective is to minimize the time consumption and also
to reduce the energy consumption caused by service migration.
Note that we are able to dynamically adjust the trade-off
between latency and energy consumption by flexibly setting
weight parameters of these two metrics according to different
application requirements. For example, for time-sensitive ap-
plications, we set a larger value of latency weight to improve
response time and QoS. For energy-sensitive applications, we
set a larger value of energy consumption weight to reduce the
energy consumption of the device.

We then construct the overhead function of user n in time
slot t, which is given by

K tot
n (t) = ωTT

c
n(t) + ωEE

tot
n (t) (17)

where ωT and ωE are used to nondimensionalize the function
and can realize a trade-off between the time consumption and
the energy consumption in each time slot.

We use N={1, 2, ..., N}, M={1, 2, ...,M} and
T ={1, 2, ..., T} to represent the sets of the mobile users,

6

service nodes and time slots, respectively. Based on the
Eq.(17), the optimization problem can be formulated as

P1: min

T∑
t=1

K tot
n (t) (18)

s.t. n ∈ N , t ∈ T (18a)
ψn(t) ∈M (18b)
Rn(t) ≥ RT (18c)
N∑

n=1

Zn(t) ≤ G (18d)

βn ∈ [0, 1] (18e)

where constraint (18a) represents the set of ICVs and time
slots, (18b) represents that the user n can only migrate its
applications instances to SNs in the region m ∈ {1, ...,M},
(18c) represents that a signal received at each user can be
successfully decoded if and only if the transmission rate from
BS to the user is greater than some threshold value RT, (18d)
represents that the number of resource blocks allocated to all
N users does not exceed G, and (18e) represents that the ratio
of computational resources allocated to application instances
should be between 0 and 1.

Obviously, it is very difficult to obtain the optimal solution
for the above objective, which requires the user’s movement
trajectory and complete system-level information over the
entire time horizon T . However, in real-world scenarios, it is
impractical to predict all the relevant information in advance.
To address this challenge, we propose a Long Short-Term
Memory (LSTM)-based vehicle trajectory prediction algorithm
that can make effective migration decisions based on the
observed information.

Meanwhile, this is a nonlinear and nonconvex optimization
problem, which is generally difficult to solve. In the following
section, we propose an LD-JRS3 algorithm to solve above
problem.

Based on the overhead of each user defined in (18), we
further define average system overhead denoted by Kave as
the average value of all users’ overheads. Then, we have

Kave =
1

N

N∑
n=1

T∑
t=1

K tot
n (t). (19)

IV. DEEP REINFORCEMENT LEARNING-BASED
ALGORITHM

A. LSTM-based Vehicular Trajectory Prediction

To obtain more adequate known information to assist in
making optimal migration decisions, we need to predict ve-
hicle trajectories based on historical information. In general,
the historical information of vehicle trajectories in a region is
similar. Meanwhile, the vehicular driving route is temporal
information, which is related to the behaviour in a time
period. Therefore, recurrent neural can be used to predict the
future trajectories of ICVs in the form of a sliding window.
Based on future trajectory information, we combine it with
QoS boundaries to predict the residence time of ICVs in the

Input

LSTM layer
[30->256]

∑

LSTM
module

LSTM layer
[256->256]

Observations for vehicle n
On

(1),...,On
(30)

FC layer
[256->128]

FC layer
[128->64]

FC layer
[30->64]

Predictions for vehicle n
Yn

(t),...,Yn
(t+30)

Output

FC layer
[64->4]

Fig. 2. The architecture of LSTM-based network.

coverage area of a single SN. LSTM is a widely used RNN
model. Our proposed algorithm predicts the future trajectories
of ICVs with the residence time within the region by LSTM.

Furthermore, we construct a five-layer DNN model, which
includes three normal fully connected layers and two fully
connected layer consisting of LSTM units. In the described
network architecture, N vehicles are selected as observation
units, and their movement trajectories, speeds, directions, and
accelerations are recorded over 30 time intervals. This data is
used as input for network training.

The architecture of LSTM-based network is illustrated as
Fig. 3. Initially, the 30-dimensional data from the vehicles
are input into a fully connected layer consisting of 256
LSTM units. Subsequently, the 256-dimensional data output
from the fully connected layer is then fed into the fully
connected layer, which outputs 256-dimensional feature data.
To facilitate machine learning of pertinent information, two
fully connected layers (256→128 and 128→64) are employed
for feature extraction and transformation, aiding the network
in learning advanced representations and features of the in-
put data. Furthermore, to capitalize on the relevance during
vehicle operation, the observed data are also input into an
additional fully connected layer (30→64), and the results are
combined with those from the previously mentioned layers.
This approach established a robust correlation between the
input and prediction sequences, enabling the machine to more
effectively learn the variations in vehicle movement over time
and improve training speed. After completing these steps,
the aggregated feature data is passed through another fully
connected layer to produce the final output sequence, which
is then converted into actual coordinates and saved for future
LSTM network capture.

The input information of the model can be expressed as

On(t) = {xtn, ytn, ϕtn, vtn, κtn}, t ∈ [0, TH] (20)

where {xtn, ytn} represents the latitude and longitude coor-
dinate, ϕtn represents the travelling angle, vtn represents the
velocity, and κtn represents the acceleration. Among them, we
define TH as the length of the historical input time series.

The output information of the model can be expressed as

Ŷn(t) = {v̂tx,n, v̂ty,n, x̂tn, ŷtn} (21)

7

CBS

MBS-1

MBS-2

MBS-3

•A

•B
•C

•D

•E

CBS

MBS-1

MBS-2

MBS-3

•A

•B
•C

•D

•E

Fig. 3. Schematic diagram of the traffic scenario.

where Ŷn(t) denotes the predicted velocities and coordinates
for user n at time slot t. It is worth noting that all the
above coordinate information is converted from the Cartesian
coordinate system to the Frenet coordinate system.

In the prioritized feedback mechanism of this paper, T res
n (t)

is calculated based on the moments corresponding to the
predicted coordinates. Based on each candidate MBS boundary
coverage area and the proposed vehicle trajectory prediction
model, the residence time of the vehicle in each candidate
MBS coverage area can be obtained. The steps for obtaining
the time are described here. As shown in Fig. 3. The red
dotted circle indicates the coverage area of the CBS, assuming
that {AB,BC,CD,DE} is the future traveling trajectory
obtained by the vehicle trajectory prediction model, and points
C and E are the two predicted locations closest to the boundary
within the coverage area of MBS-2. Therefore, the residence
time T res

n (t) of vehicle n in MBS-2 can be determined to
be tn,E − tn,C , where tn,C and tn,E are the moments when
vehicle n reaches positions C and E. Similarly, the residence
time T res

n (t) of vehicle n in MBS-1 can be determined to be
tn,A−tn,B , where tn,A and tn,B are the moments when vehicle
n reaches positions A and B. Similar to previous work, we
also use an LSTM-based scheme to predict future information
[22]. It is worth noting that the work in this paper is based on
LSTM to complete trajectory prediction.

B. MDP Model

We construct the resource scheduling and server selecting
process as an MDP process defined by the quaternion tuple
⟨S,A, P, U⟩, where S, A, P and U denote the state space,
action space, state transition probability, and utility function,
respectively. The specific process is described as follows.

• State Space S: s(t) = (F off
1 (t),

..., F off
N (t), F app

1 (t), ..., F app
N (t),Sser

1 (t− 1), ...,Sser
N (t− 1),

V1(t), ..., VN (t)) is defined as the system state at time
slot t, which is composed of the size of the offloading
task F off

n (t) for each user, the size of the service instance
F app
n (t) for each user, the service server tuple Sser

n (t) for
each user, the task prioritization Vn(t) for each user, and
the calibration parameter ϵ for users.

• Action Space A: a(t) = (ψ1(t), ψ2(t), ..., ψN (t),
Z1(t), Z2(t), ..., ZN (t)) is defined as the system action
set A in time slot t, which represents the decisions with
both resource scheduling and servers selecting for each
user, i.e., ψn(t) and Zn(t)).

• State Transition Probability P: P = S×A×S → [0, 1]
represents the distribution of the transition probability
P (s′ | s, a) from the system state s to a new system state
s′ (s, s′ ∈ S) when an action a ∈ A is chosen, which is
mainly affected by environmental changes, such as the
user’s request arrival rate, the priority of vehicles, the
threshold for rate, and the transmission failure probability.

• Utility Function U: S×A→ U maps a state-action pair
to a value U(s(t), a(t)). Our objective in this paper is to
minimize the overhead K tot

n (t) given in Eq. (17) under the
constrained conditions, and then we can define the utility
function as U(s(t), a(t)) = −

∑N
n=1K

tot
n (t). Meanwhile,

we define the average system utility denoted by Uave as
the average value of total utility of N users, and then we
have

Uave =
1

N

T∑
t=1

U(s(t), a(t)). (22)

Note that a larger average system utility (i.e., lower
system overhead) implies higher system performance.

The state space of MDP consists of the size of the user’s
offloading task, the size of the user’s application instance,
the user’s last time slot’s serving server index and the user’s
task priority coefficient, which is a 4N-dimensional space. To
cope with the problem of high-dimensional catastrophes, we
consider the following aspects. First, neural networks are used
as function approximators to approximate Q-value functions
and policies. Neural networks can efficiently process high-
dimensional input data and extract useful features, thus re-
ducing the dependence on the original high-dimensional state
space. Second, we use a prioritized experience replay buffer
to store the experience of interacting with the environment,
which can be used to train the Q-network and the policy
network multiple times. Then, we use two Q networks to
mitigate excessive bias in Q-value estimation to prevent the
problem of Q-value overestimation in high-dimensional state
spaces. Finally, we consider the maximum entropy strategy to
encourage exploration. In a high-dimensional state space, the
maximum entropy strategy can explore the state space more
comprehensively and avoid falling into local optimal solutions.
Here, we could obtain the strategy π based on the system state
s(t) ∈ S and action a(t) ∈ A. For ease of writing, we let
a(t) = at, and s(t) = st. Then, the optimal strategy π∗ with
state s(t′) is given by

argmax
π

T∑
t=0

E(st,at)∼ξj [U (st, at) + αH (π (· | s′t))] . (23)

C. LD-JRS3 Algorithm

Based on the above MDP model, we can well characterize
the relationship between different system states and individual
behaviours in smart driving scenarios. However, it is difficult
to optimize long-term system rewards under the case of
unknown environments and vehicle movements. Moreover,
the decision-making processes for service migration among
different vehicles influence each other, rendering the opti-
mization of service migration strategies a highly challenging

8

Gaussian Distribution

External Environment Prioritized Experience Replay

Actor (Policy Network) Critics (Double Q Networks)

SGD

Take

Action

Aj

KL

 Divergence

Store

Experience

Online Decision Making

LSTM

Input Section Middleware Output Section

Policy Mean Log Policy Std

Entropy

Action

Observation DNN Sampling

ℋ(𝜋)

A(t)

St At Rt St+1St At Rt St+1St At Rt St+1

...

Evaluation Network2

Evaluation Network1

State St

Offline Training

TD errors

Update Reward

Sampling

Update Network

TD errors

Update Reward

Sampling

Update Network

min(Q)

Target Network2

Target Network1

Target Network2

Target Network1

min(Q)

SGD

 θf
*
← θf Update θf : θf

*
← θf Update θf :

PER BufferPER Buffer

Gaussian Distribution

External Environment Prioritized Experience Replay

Actor (Policy Network) Critics (Double Q Networks)

SGD

Take

Action

Aj

KL

 Divergence

Store

Experience

Online Decision Making

LSTM

Input Section Middleware Output Section

Policy Mean Log Policy Std

Entropy

Action

Observation DNN Sampling

ℋ(𝜋)

A(t)

St At Rt St+1St At Rt St+1St At Rt St+1

...

Evaluation Network2

Evaluation Network1

State St

Offline Training

TD errors

Update Reward

Sampling

Update Network

min(Q)

Target Network2

Target Network1

min(Q)

SGD

 θf
*
← θf Update θf :

PER Buffer

Service queue

Service queue

Service queue

Service queue

Service queue

Heavy load

Light load

Empty load

Wireless link

Vehicles

Service Migration

Movement

Micro base station

Core base station

Edge server

+

St At Rt St+1St At Rt St+1St At Rt St+1

Mini-batchMini-batch

Fig. 4. The architecture of LD-JRS3 algorithm.

endeavor. Here, we can design a learning-driven joint resource
scheduling and dynamic server selecting strategy (LD-JRS3),
which aims to be able to make the system execute the optimal
joint resource allocation and service migration strategy in
each state, thus maximizing the expectation of the cumulative
utility function and making the strategy more stochastic. The
architecture of our proposed LD-JRS3 algorithm is shown in
Fig. 4.

In our scenario, we consider combining a prioritized ex-
perience replay (PER) approach with the soft Actor-Critic
(SAC) algorithm to solve the optimization problem posed in
the previous section. The SAC algorithm is an off-policy deep
reinforcement learning method that maintains the benefits of
entropy maximization and stability while providing efficient
learning over sampling [24]. SAC builds upon an Actor-
Critic framework. The Actor module of SAC contains a policy
network responsible for maximizing the expected utility and

the entropy. The Critic module of SAC contains two Q-
function networks responsible for providing parameter updates
and guaranteeing with the effectiveness of the policy. It is
worth noting that our strategies are modeled as Gaussian dis-
tributions, given in combination with the mean and covariance
values of the output values of the fully connected network.
Moreover, the Q-function is also approximated using a fully
connected neural network. The exact updating process of the
algorithm is described as follows.

The goal of the SAC algorithmic architecture is to maximize
the expected cumulative utility and the expected entropy of the
strategy. To this end, we define the objective function and the
optimal strategy as

J(π) =

T∑
t=0

E(st,at)∼ρπ
[U (st, at) + αH (π (· | st))] (24)

9

and
π∗ = argmax

π
J(π). (25)

Here, α is the temperature control coefficient, which is used
to adjust the importance of entropy to the utility function
and adjust the randomness strategy. It is noted that a greater
entropy will encourage the intelligent to explore more actions.
And H (π (· | st)) is the entropy function of the strategy under
the action, which can be expressed as

H (π (· | st)) = Eat
[− log π(at | st)] . (26)

To spread out the probability distribution of the actions, we
use the neural network (NN) to approximate the Q-function,
which can be expressed as

Qθ (st, at) = U(st, at) + γE [Vθ (st+1)] (27)

Here, the parameter of the Q-function is updated by soft
Bellman residuals. Thus, the objective function of the Q-
function can be expressed as

JQ(θ) = E(st,at)∼ξj [
1

2
(Qθ (st, at)− Q̂θ (st, at))

2] (28)

where ξj is a batch of sampling states and actions in the
experience replay. Q̂θ (st, at) is the estimated value of the
Q-function, which can be expressed as

Q̂θ (st, at) = U(st, at) + γE [Vθ̄ (st+1)] (29)

where θ̄ is a parameter obtained as a moving average of the
weight exponent of the soft Q-function, and Vθ̄ (st+1) is the
soft state value function, which is expressed as

Vθ̄ (st) = Eat∼π [Qθ̄ (st, at)− α log π (at | st)] . (30)

The parameter can be optimized with stochastic gradients
(SGD) by

∇̂θJQ(θ) =∇θQθ (at, st) (Qθ (st, at)− (U (st, at)

+γ (Qθ̄ (st+1, at+1)− α log (πϕ (at+1 | st+1)))) .
(31)

Then, we can update the parameter θi ← θi − λ∇θiJQ (θi),
for i ∈ {1, 2}. The output of the policy network is the mean
and standard deviation of a Gaussian distribution, which is
sampled to obtain the decision action of the policy. Since
the policy is distributed, direct sampling results cannot be
obtained, and gradient propagation is not feasible. Therefore,
the reparameterization method is required, such as

at = fϕ (ϵt; st) (32)

where ϵ is a normally distributed variable, and ϵ ∼ N (0, 1).
Here, the policy can be learned by minimizing the expected
KL-divergence, and the objective function is given by

Jπ(ϕ) = Est∼ξj

[
Eat∼πϕ

[α log (πϕ (at | st))−Qθ (st, at)]
]
.

(33)
The parameter can be optimized with SGD by

∇̂ϕJπ(ϕ) = ∇ϕα log (πϕ (at | st)) + (∇at
α log (πϕ (at | st))

−∇at
Q (st, at))∇ϕfϕ (ϵt; st) .

(34)

Then, we can update the parameter ϕi ← ϕi−λ∇ϕiJQ (ϕi). To
achieve the balance between exploration and decision-making
through automatic entropy adjustment, we have to require that
the entropy of the obtained strategy does not fall below a
certain predefined threshold, which is expressed as

H(πt) ≥ H0 (35)

where H0 denotes the threshold of minimum strategy entropy,
and the objective function of α can be expressed as

J(α) = Eat∼π [−α log π(at | st)− αH0] (36)

The parameter (i.e., α) can be optimized with SGD via αi ←
αi − λ∇αi

JQ (αi).
During neural network training, we integrate the method

of prioritized experience replay to divide the samples into
batches of experience tuples M = {ξ1, ξ2, ..., ξJ}, where
ξj = (sj , aj , U(sj , aj), s

′
j), j ∈ {1, 2, ..., J}. And we let

the pre-defined batch size be Wm. Higher priority samples
have a higher probability of being sampled during the training
process, due to the fact that these samples contribute to
the improvement of the strategy. Particularly, the temporal
difference (TD) error δj is used to measure the priority of
the empirical tuples, which can be formulated as

δj =|U(st, at) + γ(Qθ(st+1, at+1)− α log(πϕ(at+1|st+1)))

−Qθ(st, at)|
(37)

Meanwhile, the sampling priority of each cached experience
tuple ξj can be determined as pt = δj . The pseudo code
in Algorithm 1 shows the details of the proposed LD-JRS3
algorithm.

In the preparation phase of the algorithm, we initialize the
replay buffer M to a constant size and initialize the policy
network parameters. In our pseudo-code proposed above, each
episode represents the complete process of user movement in
the service migration scenario, and the deployment location of
the service is generated completely randomly when resetting
the environment. Next, we input the state s(t) of time slot
t to the policy network. The policy network uses Softmax
to perform the action a(t) with the highest probability and
obtains the utility U(s(t), a(t)) according to the formula
derived in this section. After performing action a(t), the state
space s(t) of the next time slot is acquired. We store the
tuple ⟨s(t), a(t), U(s(t), a(t)), s(t + 1)⟩ in the replay buffer
M. Then, the Q-network, the policy network, and the target Q-
network are sequentially updated by sampling from M. Finally,
the algorithm will repeat the above steps until convergence.

The SAC algorithm is a policy-based reinforcement learning
algorithm which is suitable for solving problems in continu-
ous action space. And DQN is a value-based reinforcement
learning algorithm which is suitable for solving problems in
discrete action space. The problem studied in this paper is
the service migration problem, which is a continuous action
space problem. Therefore, the SAC algorithm is more in line
with the requirements of the scenario presented in this paper.
This paper improves the sac algorithm. On the one hand,
this scheme combines the PER, which speeds up the learning
process and can improve the sample efficiency. On the other

10

hand, this scheme can automatically adjust the temperature
parameter, and this method can dynamically adjust the degree
of exploration according to the exploration-utilization balance
of the current policy, which is useful for the user to adaptively
adjust the degree of exploration of the policy in the high-
dimensional space. However, this scheme requires powerful
computility resources to complete the training, and it is not
easy to go for deployment in embedded platforms. The training
of our proposed algorithm can be completed offline using
historical data. Thus, the offline training time consumption of
our proposed algorithm does not degrade system performance
for online prediction.

D. Complexity Analysis

The LD-JRS3 algorithm consists of the LSTM algorithm for
trajectory prediction and the improved SAC algorithm for gen-
erating strategies. Thus, the time complexity of the LD-JRS3
algorithm is the sum of the complexity of the LSTM algorithm
and the complexity of the improved SAC algorithm. We first
analyze the complexity of the LSTM algorithm. Its complexity
depends on its input dimension X and output dimension Y of
the LSTM, which can be expressed as O(XY +Y 2) [25]. We
then analyze the complexity of the improved SAC algorithm
for strategy generation. This complexity is mainly affected by
the time required to train the DNNs utilized by the Actor
and Critic. According to [26], the complexity of the Actor
and the Critic can be expressed as O(Wm × (

∑I−1
i=0 hi ×

hi+1+
∑J−1

j=0 hj ×hj+1)), where Wm denotes the batch size,
and I and J are the number of fully-connected layers in
the Actor and Critic networks, respectively. In addition, hi
and hj represent the number of neurons in the i-th layer of
Actor and j-th layer of Critic, respectively. Therefore, the time
complexity of the improved SAC algorithm can be estimated
as O(Wm × g × T × (

∑I−1
i=0 hi × hi+1 +

∑J−1
j=0 hj × hj+1)),

where g represents the number of episodes in the training
process and T represents the duration of one slot. Meanwhile,
the time complexity of PER method is O(log2(Wm)) [27].
Therefore, the complexity of the LD-JRS3 algorithm can be
expressed as O(XY + Y 2 + log2(Wm) + Wm × g × T ×
(
∑I−1

i=0 hi × hi+1 +
∑J−1

j=0 hj × hj+1)).

V. SIMULATION RESULTS AND ANALYSIS

We simulate our proposed LD-JRS3 algorithm to verify the
convergence performance and also to illustrate the impact of
critical parameter on system performance. We then show the
efficiency analysis compared with other baseline algorithms.
The whole experiment is implemented by the TensorFlow
frame and runs on a PC with Intel Core i9-10980XE CPU
@3.00GHz, Memory 32G, and GPU for NVIDIA GeForce
RTX 3090.

A. Simulation Settings

The experimental data for the simulation experiments used
vehicle trajectory data collected by the Federal Highway
Administration for the next generation simulation (NGSIM)
project located near Lankershim Boulevard. Within this exper-
imental field, we deployed 16 base stations equipped with edge

Algorithm 1: LD-JRS3: a learning-driven joint re-
source scheduling and dynamic server selecting strat-
egy.
Input: PER buffer size |M|, state S, pre-training step

Tpre, training episode Ttran, learning rate λ
and ξ.

Output: Optimal θf , βn and action at.
1 ▷ Initialization
2 Initialize model parameters θ and θ∗, θ∗ = θ;
3 Initialize average utility U = 0;
4 Initialize t = 0;
5 ▷ Implementation
6 for n ≤ Ttran do
7 while True do
8 ▷ Observing & Acting
9 Obtain the state s(t) from VECN;

10 Output the corresponding minQθ(s(t), a(t)) of
actions from double Q networks;

11 Sample action a(t) ∼ π from policy network;
12 ▷ Replaying
13 Refresh replay buffer;
14 Execute a(t), obtain the utility U(s(t), a(t))

and the following state s(t+ 1), append the
new experience tuple
⟨s(t), a(t), U(s(t), a(t)), s(t+ 1)⟩ to PER
buffer M;

15 if t ≥ Tpre then
16 break;
17 end
18 end
19 t← t+ 1;
20 Select a batch from PER buffer with SumTree

method and calculate the target values;
21 ▷ Updating
22 Update Q-function of Critic parameters with;
23 βi ← βi − λ∇βi

JQ (βi), for i ∈ {1, 2};
24 Soft update target network of Critic parameters

with;
25 θf ← ψθf + (1− ψ)θf , for i ∈ {1, 2};
26 Update policy function of Actor parameter with;
27 ϕi ← ϕi − λ∇ϕi

JQ (ϕi), for i ∈ {1, 2};
28 end

servers with the same computation and storage capacity, each
covering an area of a square region centered on the server with
a side length of 1 km, which can completely cover our study
roadway, and the tasks reaching the mobile users and edge
servers satisfy the Poisson distribution within each time slot.
Moreover, in this setting, we consider that each base station
has a bandwidth of 20 MHz and a computational capability of
100 GHz. In the initial state of the system (t = 0), all vehicles
in the system access the server closest to the vehicle location.
The detailed parameter setting is listed in Table III.

11

TABLE III
SIMULATION PARAMETERS

Parameters Values
Mobile users 96
Service nodes 16

Server computational capability 100 GHz
Service instance size [1,10] MB

Offloading service size [0.5,1] MB
Processing density 3000 CPU cycle/bit

Backhaul network bandwidth 500 Mb/s
Positive coefficient of migration latency 1 s/hop
Positive coefficient of backhaul latency 0.05 s/hop

Offloading task generation rate 1 unit/slot
Energy consumption for migration [50,100] mW

Noise power -114 dBm
Optimizer Adam [23]

Activation function ReLU/GELU
Learning rate of utility 0.001, 0.0001, 0.00001

Learning rate of neural network 0.0001
Batch size 400, 500, 600

Cached experience replay buffer size 1× 105

Iteration epoch 100
Training step 2000

B. Simulation Results

1) Convergence Performance: To ensure the reliability of
our proposed LD-JRS3 algorithm, we first verify its conver-
gence performance.

Figure 5 demonstrates the trajectory prediction results for a
portion of the vehicles, which illustrates the change in longi-
tude information and latitude information of the vehicles, and
the corresponding horizontal and vertical coordinate values
indicate the relative position of the vehicle with respect to the
reference point. Note that the red line represents the trajectory
of the corresponding moment obtained by the algorithm based
on the prediction of the known information of the vehicle, and
the blue line represents the trajectory coordinates of the vehicle
that actually traveled at the corresponding moment. Based on
the predicted trajectories obtained, we calculated the average
absolute value of the distance deviation between the predicted
trajectories and the actual trajectories of the algorithm in the
horizontal and vertical directions at different prediction time
slot lengths, and the calculation results are shown in Table
IV. We can see that the prediction accuracy of our proposed
LSTM-based trajectory prediction algorithm can reach an error
of less than 0.8 m in a 2-second prediction time slot, and the
algorithm can still keep the distance error averaged within
1.5 m in a 7-second prediction time slot, which is basically
negligible compared to the edge server coverage (R ≤ 500 m)
in the service migration scenario.

Figure 6 illustrates the average system utility under the LD-
JRS3 algorithm at various learning rates. It is clear that the
setting of the learning rate has an effect on the utility curve of
the LD-JRS3 algorithm, and choosing the appropriate learning
rate allows the algorithm to converge to a higher average
system utility. It can be explained as follows. A learning
rate that is too high can cause the agent to take excessively
large update steps, leading to oscillations around the optimal

50 51 52 53

150

200

250

300

(a) User A.

30 35 40
200

300

400

500

(b) User B.

28 30 32 34 36

100

150

200

250

300

350

(c) User C.

55 60 65
700

800

900

1000

1100

(d) User D.

Fig. 5. Comparison of predicted and actual trajectories.

solution. Conversely, a learning rate that is too low results in
slow updates, which may prevent the agent from adapting to
environmental changes in a timely manner. Based on these
observations, we decided to set the learning rate at 0.0001 for
subsequent experiments.

Figure 7 displays the average system utility under the LD-
JRS3 algorithm for various batch sizes. It is clear that batch
size has an impact on the utility of the LD-JRS3 algorithm
implementation, and the appropriate batch size helps the model
accelerate convergence. It can be explained as follows. Firstly,
larger batch sizes enrich the empirical samples necessary
for model training, thereby accelerating model convergence.
However, excessively large batch sizes may cause the model
to settle into local optimum, thus affecting the convergence
ability of the algorithm. Based on these insights, we have
chosen to set the batch size to 500 for subsequent experiments.

Figure 8 illustrates the average system utility under the
LD-JRS3 algorithm with varying discount factors, i.e., γ ∈
{0.91, 0.95, 0.99}. It is evident that the discount factor has
an effect on both the utility performance and convergence
behavior. A lower discount factor of γ = 0.91 results in
faster convergence but at the expense of lower utility. In
contrast, a higher discount factor of γ = 0.99 yields greater
utility but with less stable convergence performance. This can
be explained as follows. A smaller γ prioritizes immediate
rewards, simplifying the training process. On the other hand, a
larger γ emphasizes long-term benefits, which can complicate
convergence. Based on these findings, we have decided to set
the discount factor to γ = 0.95 in our subsequent experiments.

2) Efficiency Analysis: We compare our proposed LD-
JRS3 algorithm with the following benchmark algorithms.

R-learning empowered double deep Q-learning algorithm
(DDRN): Existing work [6] solves the optimization problem
based on the algorithm of R-learning empowered double
deep Q-learning, which is more concerned with the long-term
average revenue of the users. The vehicle will select the best
action based on the maximum system utility. Notably, the

12

� �� �� �� �� ���
����������������������������

�����

�����

�����

�����

�����

�����

�����

�����

�����

	�
��
��
��
��
���

�
��
���
���

�

���������������1×10−5

���������������1×10−4

���������������1×10−3

Fig. 6. The system utility under the LD-JRS3 algorithm for different learning
rates.

� �� �� �� �� ���
���������������������������

�����

�����

�����

�����

�����

�����

�����

�����

�����

�
��

�
��

��
���

�
��

���
���

�

����������	����
����������	����
����������	����

Fig. 7. The system utility under the LD-JRS3 algorithm for different batch
sizes.

� �� �� �� 	� ���
�����������������������������

��	��

�����

�����

�����

�����

��	��

�����

�����

�����

��
��
��

��
��

���
�
��
���

���
�

�������������������
�
�������������������
�
�������������������

Fig. 8. The system utility under the LD-JRS3 algorithm for different discount
factors.

TABLE IV
TRAJECTORY PREDICTION MODEL ERROR (M)

Time slot Longitude error Latitude error Distance error
t = 1 0.07 0.35 0.35
t = 2 0.07 0.75 0.75
t = 3 0.08 1.05 1.06
t = 4 0.08 1.16 1.17
t = 5 0.09 1.21 1.22
t = 6 0.10 1.34 1.35
t = 7 0.11 1.43 1.44
t = 8 0.15 1.69 1.70
t = 9 0.22 2.53 2.53

algorithm uses a centralized training and distributed execution
model.

Deep Q-learning-based algorithm (DQN-based): Existing
work [28] addresses the problem of service migration with
an algorithm based on a two-stream DQN, an algorithm that
efficiently learns and optimizes action strategies in complex
environments. The vehicle will select the optimal server for
service migration based on the maximum Q-value. Notably, the
algorithm uses a centralized training and distributed execution
model.

Multi-armed bandit-based algorithm (MAB-based): Existing
work [29] formulates the dynamic service migration problem
as a contextual Multi-Arm Bandit (MAB) problem, and then
proposes an online learning algorithm based on Thompson
sampling to explore the dynamic MEC environment.

Always migrate algorithm (AM): The running instance will
always migrate to the server closest to the vehicle according
to the vehicle’s movement trajectory.

Always non-migration algorithm (NM): The running in-
stance will always maintain execution on the original server
until the task is completed, and the vehicles covered by the
original server will receive the service content by means of
multi-hop data transmission between servers.

Random migration algorithm (Random): The running in-
stance will be randomly migrated to an optional server when
the vehicles are far away from the coverage of the current
server.

Figure 9 shows the convergence of our proposed scheme
compared to other algorithms. We set the iteration period
to 100 epochs, and one epoch is set to be 2000 steps. We
can observe that the LD-JRS3 algorithm and the MAB-based
algorithm obtain higher system utilities. Our algorithm obtains
higher system returns. In addition, the algorithm proposed in
this paper also slightly outperforms the DQN-based algorithm
in terms of the stability of the total gain of the system. The
reason for this can be explained as follows. Our algorithm and
DQN-based algorithm use randomized actions to explore the
environment in the early stages of training, where it has lower
system returns before 30 rounds. Our algorithm converges
faster because of the prioritized sampling scheme. It also
combines the advantages of SAC, i.e., overestimation bias is
reduced by using a Gaussian strategy to output continuous
action values and employing a dual Q-learning architecture.
Further, incorporating the prioritization feedback mechanism
empowered by recurrent neural networks, computational and
bandwidth resources are rationally allocated. The model can
be trained offline and predicted online. In this paper, both time
and energy costs together constitute the system overhead. We
supplement the experiment with time and energy related costs
as shown in Figs. 10 and 11. The experimental results demon-
strate that our proposed scheme can minimize unnecessary
time consumption and energy consumption while maintaining
QoS. Fig. 12 shows the convergence of entropy loss, which
also illustrates the convergence performance of our proposed
algorithm.

Figure 13 shows the impact of different task generation
rates on the average system overhead. In our simulation, we
incrementally increased the offloading task generation rate

13

0 20 40 60 80 100
Number of training iterations

-3000

-2750

-2500

-2250

-2000

-1750

-1500

-1250

Av
er

ag
e

sy
st

em
 u

til
ity

LD-JRS3
DDRN
DQN-based
MAB-based
AM
NM
Random

Fig. 9. The system utility under the LD-JRS3 algorithm compared to these
under the baseline algorithms.

Fig. 10. The average system time cost under the LD-JRS3 algorithm compared
to these under the baseline algorithms.

Fig. 11. The average system energy cost under the LD-JRS3 algorithm
compared to these under the baseline algorithms.

� �� �� �� �� ���

���������������������������

�

�

��

��

��

��

��

��

��

	�
���

��
���

��
�

��������

Fig. 12. The convergence performance of entropy loss for the LD-JRS3
Algorithm.

1 2 3 4 5 6
Task generation rate for users (units/slot)

1000

1500

2000

2500

3000

3500

Av
er

ag
e

sy
st

em
 o

ve
rh

ea
d

LD-JRS3
DDRN
DQN-based
MAB-based
AM
NM
Random

Fig. 13. The impact of different task generation rates on the average system
overhead.

1000 2000 3000 4000 5000
Processing density (CPU cycle/bit)

1200

1400

1600

1800

2000

2200

2400

2600

Av
er

ag
e

sy
st

em
 o

ve
rh

ea
d

LD-JRS3
DDRN
DQN-based
MAB-based
AM
NM
Random

Fig. 14. The impact of different processing densities on the average system
overhead.

from 1 unit to 6 units in each time slot, while setting the
migration cost at 2 s/hop. The figure clearly shows that as the
generation rate of the offloading tasks increases, the average
system overhead also increases. This increase is due to the
fact that processing more offloading tasks requires more CPU
cycles, which leads to an increase in computational latency.
In addition, the figure shows that our proposed algorithm sig-
nificantly outperforms benchmark algorithms such as DDRN,
DQN-based and MAB-based algorithms under different task
generation rates. Notably, the Random algorithm incurs the
highest total overhead. This is likely due to the fact that
the algorithm migrates service instances randomly, which
introduces unnecessary additional overheads.

Figure 14 shows the impact of different processing densities
on the average system overhead. Our findings show that the
LD-JRS3 algorithm adapts well to changes in processing
density and consistently outperforms all baseline algorithms.
The reasons for this superior performance are explained as
follows. Firstly, changes in processing density primarily affect
computational latency. LD-JRS3, a learning-based algorithm,
is adept at avoiding server overload, which in turn reduces
computational latency. This adaptability is key in maintaining
high system efficiency under varying load conditions. Sec-
ondly, the LD-JRS3 algorithm integrates a resource scheduling
method that optimizes the migration process. By doing so,
it minimizes unnecessary migrations, further enhancing the
overall efficiency and effectiveness of the system. These fea-
tures collectively contribute to the LD-JRS3 algorithm’s ability

14

5200

0.5 1.0 1.5 2.0 2.5 3.0 3.5
1000

1200

1400

1600

1800

2000

2200

Migration cost (s/hop)

Av
er

ag
e

sy
st

em
 o

ve
rh

ea
d

LD-JRS3
DDRN
DQN-based
MAB-based
AM
NM
Random

Fig. 15. The impact of different migration costs on the average system
overhead.

50 75 100 125 150

Computational capability of server (GHz)

1000

2000

3000

4000

5000

6000

Av
er

ag
e

sy
st

em
 o

ve
rh

ea
d

LD-JRS3
DDRN
DQN-based
MAB-based
AM
NM
Random

Fig. 16. The impact of different computational capabilities on the average
system overhead.

to manage processing density changes more effectively than
traditional algorithms, thereby ensuring better performance
across various scenarios.

Figure 15 shows the impact of different migration costs
on the average system overhead, with migration task data
size and offloading task generation rate kept constant in
the environment. The generation rate of offloading tasks is
set at 3 units per second, and migration costs range within
{0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5}. It is clear from the figure
that the average system overhead of the Random algorithm
increases dramatically with the migration cost. Meanwhile,
the average system overhead of the NM algorithm remains
constant, aligning with typical expectations for this strat-
egy. Additionally, when comparing the other algorithms, our
algorithm demonstrates certain advantages. The reasons are
explained as follows. Migration cost is a crucial factor influ-
encing the average system overhead and is directly linked to
the algorithm’s effectiveness within its environment. The LD-
JRS3 algorithm manages to balance time and energy overheads
through efficient resource scheduling and server selecting
strategies. This method not only enhances the overall system
performance but also improves resource utilization efficiency,
thus minimizing unnecessary time consumption and energy
consumption while maintaining QoS.

Figure 16 shows the impact of different computational capa-
bilities on the average system overhead, with server computa-
tional capacities sampled from the set {50, 75, 100, 125, 150}

4 9 16 25
The number of servers

0

250

500

750

1000

1250

1500

1750

Av
er

ag
e

sy
st

em
 o

ve
rh

ea
d

LD-JRS3
DDRN
DQN-based
MAB-based

Fig. 17. The impact of different servers on the average system overhead.

0 20 40 60 80 100
Number of training iterations

-2800

-2600

-2400

-2200

-2000

-1800

-1600

-1400

Av
er

ag
e

sy
st

em
 u

til
ity

LD-JRS3

Fig. 18. The system utility under the LD-JRS3 algorithm (N=200).

GHz. It is evident from the graph that increasing the server’s
computational capability significantly reduces average system
overhead. For servers with insufficient computational capacity,
computational latency increases substantially, contributing to
the average system overhead. As shown, enhancing the server’s
computational capability from 50 GHz to 100 GHz decreases
the average system overhead by nearly one-half. However,
further increments in computational capability beyond 100
GHz result in diminishing returns, with the computational
capability contribution to total overhead gradually decreasing
and the incremental benefits of performance improvements
becoming less significant. This phenomenon can be explained
by the law of diminishing returns, where initial increases
in computational capability substantially alleviate bottlenecks
in processing speed, thereby reducing latency and overhead.
Once the system reaches an optimal level of computational
capability, additional increases yield smaller improvements in
performance, as the system overhead becomes less sensitive
to changes in computational capability. The experimental
sections of this study are therefore conducted with the server’s
computational capability set at 100 GHz to optimize the
balance between performance and resource usage.

Figure 17 shows the impact of different number of servers
on the average system overhead. In our experiments, we
selected the number of servers from the set of {4, 9, 16, 25}
to evaluate the performance of the different algorithms. The
figure compares the LD-JRS3 algorithm with other benchmark
algorithms. We find that the average system overhead for
the Random strategy increases significantly as the number

15

of servers decreases, highlighting its inefficiency in managing
fewer resources. In contrast, the LD-JRS3 algorithm demon-
strates a more stable ability to maintain lower average system
overhead, regardless of the number of servers. This enhanced
performance of the LD-JRS3 algorithm is due to its effective
resource allocation and server selecting mechanisms, which
optimize computational and networking resources better than
the comparative strategies, particularly in scenarios where
server resources are limited. Under different network loads and
different server capacities, the LD-JRS3 algorithm observes
new environmental state information to retrain the generation
policy to obtain a certain set of action spaces thus guaranteeing
the maximization of the average system utility. The algorithm
employs an RNN-based feedback strategy and a MDP-based
reinforcement learning strategy. First, reinforcement learning
is used to obtain the optimal actions (i.e., including the number
of allocated blocks of computational resources and the index
of the selected serving server). Further, the feedback strategy is
used to determine different priorities, so that network resources
(i.e., channel bandwidth) and edge server computational re-
sources are provided proportionally according to the priority
coefficients. This ability to efficiently manage overhead, even
with fewer servers, underscores the robustness and adaptability
of the LD-JRS3 algorithm.

We scaled up the experimental size of the edge network,
where one edge server equipped at one BS can serve 200
mobile users. Fig. 18 shows the convergence of the LD-JRS3
algorithm. Similar to the input size, our proposed algorithm
ensures stable convergence.

VI. CONCLUSION

This paper explored the service migration optimization for
system overhead minimization in wireless edge networks.
Specifically, we formulated it as a nonlinear and nonconvex
optimization problem with the aim of minimizing average
system overhead based on resource scheduling and server se-
lecting. For this purpose, we proposed an LD-JRS3 algorithm
that fully takes advantage of both recurrent neural network
and SAC algorithm. Simulation results show that our proposed
LD-JRS3 algorithm can achieve higher system utility (i.e.,
lower system overhead) in comparison with other benchmark
algorithms, and LD-JRS3 is able to achieve high performance,
with 19%, 24% and 11% higher utility than the DDRN, DQN-
based and MAB-based systems, respectively.

In this paper, we select the cooperative MBS equipped with
edge servers based on utility functions. The consumption of
multiple cooperating MBS is an interesting problem that we
will consider in future work. Blockchain technology can be
provided to reach consensus among individual users. This is
an interesting issue of data security and privacy protection,
which we will further explore in our subsequent work. DRL
combined with frame-stacking is very constructive advice and
this is an interesting direction that we will delve into further in
our future work. DRL clipping combined with frame stacking
techniques can help reduce the computational overhead, which
is also an interesting topic for our future work.

REFERENCES

[1] M. Huang, W. Liu, T. Wang, A. Liu and S. Zhang, “A Cloud–MEC
Collaborative Task Offloading Scheme With Service Orchestration,” in
IEEE Internet of Things Journal, vol. 7, no. 7, pp. 5792-5805, July 2020.

[2] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan and X. Chen,
“Convergence of Edge Computing and Deep Learning: A Comprehen-
sive Survey,” in IEEE Communications Surveys & Tutorials, vol. 22,
no. 2, pp. 869-904, Secondquarter 2020.

[3] G. Hong, B. Yang, W. Su, H. Li, Z. Huang and T. Taleb, “Joint Content
Update and Transmission Resource Allocation for Energy-Efficient Edge
Caching of High Definition Map,” in IEEE Transactions on Vehicular
Technology, vol. 73, no. 4, pp. 5902-5914, April 2024.

[4] Y. Xu, H. Zhang, H. Ji, L. Yang, X. Li and V. C. M. Leung, “Transaction
Throughput Optimization for Integrated Blockchain and MEC System
in IoT,” in IEEE Transactions on Wireless Communications, vol. 21, no.
2, pp. 1022-1036, Feb. 2022.

[5] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb and H. Flinck, “Fast
Service Migration in 5G Trends and Scenarios,” in IEEE Network, vol.
34, no. 2, pp. 92-98, March/April 2020.

[6] A. Mukhopadhyay, G. Iosifidis and M. Ruffini, “Migration-Aware Net-
work Services With Edge Computing,” in IEEE Transactions on Network
and Service Management, vol. 19, no. 2, pp. 1458-1471, June 2022.

[7] Y. Chen, Y. Sun, C. Wang and T. Taleb, “Dynamic Task Allocation
and Service Migration in Edge-Cloud IoT System Based on Deep
Reinforcement Learning,” in IEEE Internet of Things Journal, vol. 9,
no. 18, pp. 16742-16757, 15 Sept.15, 2022.

[8] Y. Peng et al., “Computing and Communication Cost-Aware Service
Migration Enabled by Transfer Reinforcement Learning for Dynamic
Vehicular Edge Computing Networks,” in IEEE Transactions on Mobile
Computing, vol. 23, no. 1, pp. 257-269, Jan. 2024.

[9] E. Volnes, T. Plagemann and V. Goebel, “To Migrate or Not to Migrate:
An Analysis of Operator Migration in Distributed Stream Processing,”
in IEEE Communications Surveys Tutorials, vol. 26, no. 1, pp. 670-705,
Firstquarter 2024.

[10] X. Chen et al., “Dynamic Service Migration and Request Routing for
Microservice in Multicell Mobile-Edge Computing,” in IEEE Internet
of Things Journal, vol. 9, no. 15, pp. 13126-13143, 1 Aug.1, 2022.

[11] Z. Liang, Y. Liu, T. -M. Lok and K. Huang, “Multi-Cell Mobile Edge
Computing: Joint Service Migration and Resource Allocation,” in IEEE
Transactions on Wireless Communications, vol. 20, no. 9, pp. 5898-
5912, Sept. 2021.

[12] J. Xu, X. Ma, A. Zhou, Q. Duan and S. Wang, “Path Selection for
Seamless Service Migration in Vehicular Edge Computing,” in IEEE
Internet of Things Journal, vol. 7, no. 9, pp. 9040-9049, Sept. 2020.

[13] X. Zhou, S. Ge, T. Qiu, K. Li and M. Atiquzzaman, “Energy-Efficient
Service Migration for Multi-User Heterogeneous Dense Cellular Net-
works,” in IEEE Transactions on Mobile Computing, vol. 22, no. 2, pp.
890-905, 1 Feb. 2023.

[14] Q. Yuan, J. Li, H. Zhou, T. Lin, G. Luo and X. Shen, “A Joint Service
Migration and Mobility Optimization Approach for Vehicular Edge
Computing,” in IEEE Transactions on Vehicular Technology, vol. 69,
no. 8, pp. 9041-9052, Aug. 2020.

[15] X. Xu, L. Yao, M. Bilal, S. Wan, F. Dai and K. -K. R. Choo, “Service
Migration Across Edge Devices in 6G-Enabled Internet of Vehicles
Networks,” in IEEE Internet of Things Journal, vol. 9, no. 3, pp. 1930-
1937, 1 Feb.1, 2022.

[16] Z. Ning, H. Chen, E. C. H. Ngai, X. Wang, L. Guo and J. Liu,
“Lightweight Imitation Learning for Real-Time Cooperative Service
Migration,” in IEEE Transactions on Mobile Computing, vol. 23, no.
2, pp. 1503-1520, Feb. 2024.

[17] A. Dalgkitsis, P. -V. Mekikis, A. Antonopoulos and C. Verikoukis,
“Data Driven Service Orchestration for Vehicular Networks,” in IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 7, pp.
4100-4109, July 2021.

[18] L. Liu, J. Feng, X. Mu, Q. Pei, D. Lan and M. Xiao, “Asynchronous
Deep Reinforcement Learning for Collaborative Task Computing and
On-Demand Resource Allocation in Vehicular Edge Computing,” in
IEEE Transactions on Intelligent Transportation Systems, vol. 24, no.
12, pp. 15513-15526, Dec. 2023.

[19] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou and X. Shen, “Delay-
Aware Microservice Coordination in Mobile Edge Computing: A Re-
inforcement Learning Approach,” in IEEE Transactions on Mobile
Computing, vol. 20, no. 3, pp. 939-951, 1 March 2021.

[20] T. Ouyang, R. Li, X. Chen, Z. Zhou and X. Tang, “Adaptive User-
managed Service Placement for Mobile Edge Computing: An Online

16

Learning Approach,” IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications, Paris, France, 2019, pp. 1468-1476.

[21] J. Wang, J. Hu, G. Min, Q. Ni and T. El-Ghazawi, “Online Service
Migration in Mobile Edge With Incomplete System Information: A Deep
Recurrent Actor-Critic Learning Approach,” in IEEE Transactions on
Mobile Computing, vol. 22, no. 11, pp. 6663-6675, 1 Nov. 2023.

[22] X. Gao, J. Wang and M. Zhou, “The Research of Resource Allocation
Method Based on GCN-LSTM in 5G Network,” in IEEE Communica-
tions Letters, vol. 27, no. 3, pp. 926-930, March 2023.

[23] J. Wang, J. Hu, G. Min, A. Y. Zomaya and N. Georgalas, “Fast Adaptive
Task Offloading in Edge Computing Based on Meta Reinforcement
Learning,” in IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 1, pp. 242-253, 1 Jan. 2021.

[24] X. Gao, Y. Sun, H. Chen, X. Xu and S. Cui, “Joint Computing, Pushing,
and Caching Optimization for Mobile-Edge Computing Networks via
Soft Actor–Critic Learning,” in IEEE Internet of Things Journal, vol.
11, no. 6, pp. 9269-9281, 15 March15, 2024.

[25] T. Ergen and S. S. Kozat, “Online Training of LSTM Networks in
Distributed Systems for Variable Length Data Sequences,” in IEEE
Transactions on Neural Networks and Learning Systems, vol. 29, no.
10, pp. 5159-5165, Oct. 2018.

[26] A. R. Heidarpour, M. R. Heidarpour, M. Ardakani, C. Tellambura and M.
Uysal, “Soft Actor–Critic-Based Computation Offloading in Multiuser
MEC-Enabled IoT—A Lifetime Maximization Perspective,” in IEEE
Internet of Things Journal, vol. 10, no. 20, pp. 17571-17584, 15 Oct.15,
2023.

[27] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” 2015, arXiv:1511.05952.

Yuan Yuan was born in 1997, and received his
bachelor’s degree from Beijing Jiaotong University
in 2018. He is now a doctoral student at the Na-
tional Engineering Research Center of Advanced
Network Technologies, Beijing Jiaotong university.
He is mainly engaged in the research of the vehicular
network and multi-access edge computing.

Bin Yang received his Ph.D. degree in systems
information science from Future University Hako-
date, Japan in 2015. He was a research fellow with
the School of Electrical Engineering, Aalto Univer-
sity, Finland, from Nov. 2019 to Nov. 2021. He is
currently a professor with the School of Computer
and Information Engineering, Chuzhou University,
China. His research interests include unmanned
aerial vehicle networks, mobile edge computing,
cyber security and Internet of Things.

Wei Su was born in October 1978. He got the Ph.D.
degree in Communication and Information Systems
from Beijing Jiaotong University in 2008. Now he is
a teacher in the School of Electronic and Information
Engineering, Beijing Jiaotong University. He granted
the title of professor in 2015. Dr. Su Wei is mainly
engaged in researching key theories and technologies
for the next generation Internet and has taken part
in many national projects such as National Basic
Research Program (also called 973 Program), the
Projects of Development Plan of the State High

Technology Research, the National Natural Science Foundation of China.
He currently presides over the research project Fundamental Research on
Cognitive Services and Routing of Future Internet, a project funded by the
National Natural Science Foundation of China.

Jie Ma is currently pursuing the Ph.D. degree with
School of Electronic and Information Engineering,
Beijing Jiaotong University, Beijing, China. His re-
search interests include future network architecture,
and network security.

Yihua Peng is currently pursuing the Ph.D. degree
with School of Electronic and Information Engineer-
ing, Beijing Jiaotong University, Beijing, China. His
primary research interests include network security
and in-band network telemetry.

Qi Liu received the B.S. degree in information
and communication engineering and Ph.D. degree
in communication and information system from Bei-
jing Jiaotong University, Beijing, China, in 2003 and
2009, respectively. Then she works as a post-doctor
in electronic engineering department in Tsinghua
University from 2009 to 2011. She is currently a
professorate senior engineer in Smart City Research
Institute of China Unicom. Her research interests fo-
cus on 5G, cooperation of heterogeneous networks,
Internet of Vehicles and High-Precision Positioning.

Tarik Taleb received the B.E. degree Information
Engineering with distinction and the M.Sc. and
Ph.D. degrees in Information Sciences from Tohoku
University, Sendai, Japan, in 2001, 2003, and 2005,
respectively. He is currently a Professor at the Centre
for Wireless Communications (CWC) – Networks
and Systems Unit, Faculty of Information Tech-
nology and Electrical Engineering, The University
of Oulu. He is the founder and director of the
MOSA!C Lab (www.mosaic-lab.org). Between Oct.
2014 and Dec. 2021, he was a Professor at the

School of Electrical Engineering, Aalto University, Finland. Prior to that,
he was working as Senior Researcher and 3GPP Standards Expert at NEC
Europe Ltd, Heidelberg, Germany. Before joining NEC and till Mar. 2009,
he worked as assistant professor at the Graduate School of Information
Sciences, Tohoku University, Japan, in a lab fully funded by KDDI, the
second largest mobile operator in Japan. From Oct. 2005 till Mar. 2006,
he worked as research fellow at the Intelligent Cosmos Research Institute,
Sendai, Japan. His research interests lie in the field of telco cloud, network
softwarization & network slicing, AI-based software defined security, im-
mersive communications, mobile multimedia streaming, and next generation
mobile networking. He has been also directly engaged in the development and
standardization of the Evolved Packet System as a member of 3GPP’s System
Architecture working group 2. He served as the general chair of the 2019
edition of the IEEE Wireless Communications and Networking Conference
(WCNC’19) held in Marrakech, Morocco. He was the guest editor in chief of
the IEEE JSAC Series on Network Softwarization & Enablers. He was on the
editorial board of the IEEE Transactions on Wireless Communications, IEEE
Wireless Communications Magazine, IEEE Journal on Internet of Things,
IEEE Transactions on Vehicular Technology, IEEE Communications Surveys
& Tutorials, and a number of Wiley journals. Till Dec. 2016, he served as
chair of the Wireless Communications Technical Committee.

