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Abstract. Artificial intelligence (AI) rapidly advances technological in-
novation, particularly in data processing and intelligent decision-making.
Edge computing (EC) addresses key challenges in AI deployment, such
as reducing latency and reliance on centralized cloud infrastructure by
enabling processing at the network edge. However, EC faces limitations
in managing computational complexity, latency, and resource constraints
on edge devices. To overcome these challenges, we propose a novel reverse
Federated Knowledge Distillation (rFedKD) method. Unlike traditional
knowledge distillation, rFedKD extracts knowledge from small, personal-
ized models at the edge and integrates it into a large central model. This
approach aggregates diverse information while maintaining client-specific
knowledge. The central model, leveraging its generalization capabilities,
improves the accuracy of personalized edge models and accelerates train-
ing processes. The experimental results demonstrate the effectiveness of
rFedKD, achieving a 15% improvement in accuracy and reducing com-
munication rounds by 20 compared to the latest methods. This enhances
system efficiency and user experience, establishing rFedKD as a promis-
ing solution for advancing edge AI.

Keywords: Artificial Intelligence · Edge Computing · Knowledge Dis-
tillation · Federated Learning.

1 Introduction

The demand for high-quality content has driven the adoption of AI-generated
content (AIGC) to address digital economy challenges, with applications in nat-
ural language generation and image creation (e.g., ChatGPT [1], Stable Diffu-
sion [2]). AIGC uses AI algorithms for tasks like text and image generation, while
edge computing (EC) deploys models on edge servers to reduce latency [4–6].
However, EC faces computational complexity, latency, and resource constraints



on edge devices [7–9]. Traditional knowledge distillation (KD) transfers knowl-
edge from large to small models, but federated knowledge distillation (FedKD)
often requires significant resources and bandwidth [10].

To address these challenges, we propose a Reverse Federated Knowledge
Distillation (rFedKD) framework, which distills knowledge from small edge mod-
els into a large central model. This simplifies training into two stages: UE-side
training and server-side aggregation, reducing resource consumption and com-
plexity while improving accuracy and speed. The main contributions are: 1)
Reverse Knowledge Distillation, integrating knowledge from small models into
a large model to enhance performance. 2) Elimination of Model Aggregation,
allowing the server to transmit smaller, efficient models. 3) Improved System
Performance, with experiments showing 15% higher accuracy and 20% fewer
communication rounds compared to state-of-the-art methods.

2 Related Work

AIGC techniques have been widely applied to network resource coordination.
For instance, Tang et al. [11] proposed an automated, distributed, AI-enabled
testing framework that employs a master-actor architecture to manage terminal
devices for distributed testing. The framework utilizes AI to intelligently explore
the decision space of AI models in O-RAN, facilitating the evaluation of deci-
sion performance, vulnerabilities, and security. Alhammadi et al. [12] surveyed
AI techniques across various wireless networks and applications, highlighting un-
resolved research challenges and proposing potential solutions. Ioannou et al. [13]
introduced a distributed AI framework based on machine learning, incorporat-
ing modular BDIx agents that extend the belief-desire-intent (BDI) architecture
with ML capabilities. However, these works mainly address the deployment and
efficiency of AI models without focusing on the specific challenges of KD in
federated settings, leading to the over-consumption of the system resources.

Multiple studies have explored FedKD methods to address edge intelligence
challenges. Matsubara et al. [14] modified DNN structures for image classifi-
cation, achieving high accuracy via KD-based compression. Ma et al. [15] pro-
posed CFeD to address FL’s forgetting problem using KD on UEs and servers
with unlabeled data. Chadha et al. [16] extended FedLess to reduce resource
and statistical heterogeneity in FL. Li et al. [17] introduced ECCT for bidirec-
tional knowledge transfer between edge and cloud. Wang et al. [18] developed
Shoggoth, an edge-cloud collaboration architecture that improves accuracy by
15%-20% and reduces network costs. Zhao et al. [19] proposed MESON for urban
VEC, using DRL to enhance response time and energy efficiency. Xu et al. [20]
analyzed security and privacy challenges in mobile AIGC networks. However,
these methods often involve complex model aggregation and multiple training
stages, increasing computational and communication overhead.



3 System Model

We consider that the system comprises multiple user equipment (UEs) K =
{k|1, 2, · · · ,K}, and base stations (BSs) B = {b|1, 2, · · · , B} with limited stor-
age resources Cb ∈ R+. The cloud C maintains a model library with M =
{m|1, 2, · · · ,M} popular models, each of size κm ∈ R+. Users maintain rela-
tively fixed positions over a period T = {t|1, 2, · · · , T}, enabling local and server
model training. Each BS is connected to neighboring BSs via wired links and
to the cloud via backhaul links. UEs collect and cache data, generating compu-
tation tasks P = {P1, P2, · · · , PK}, and maintains private datasets Dk, k ∈ K.
TThe edge server (ES) determines offloading strategies for tasks P based on
collected information Ik and environmental conditions. The computation load
of Pk depends on the device’s CPU cycles ρk. Due to the small size of model M
and the proximity of UEs to ESs, latency and energy costs for model exchanges
are negligible.

3.1 Task Transmission and Computation Model

Tasks P can be executed locally or offloaded to the edge server (ES) or cloud,
denoted as aP = {akP , abP , aCP }, where akP , a

b
P , a

C
P ∈ {0, 1} indicate execution at

the local UE, ES, or cloud, respectively, with the constraint:

C1 : akP + abP + aCP = 1,∀P ∈ P, (1)

Each UE generates a dataset Dk and trains the model locally. The wireless link
rate between UE k and ES b is

vtk,b = wt
k,blog2(1 +

qb|hk,b|2

σ2
),∀k ∈ K, b ∈ B, t ∈ T , (2)

where wt
k,b = (wt

k,b)k∈K are the wireless bandwidth allocated to the users, Wb

is the total channel bandwidth, qb is the assigned transmit power of b, hk,b

denotes the channel gain, and σ2 is the noise power. The transmission latency
for uploading task P to the ES is ltransP,KB = |Dk|

vt
k,b

. and the transmission latency

from ES to the cloud is ltransP,BC = |Dk|
vC , where vC is the average transmission rate

of each task from the ES to the cloud.
When task P is executed locally, i.e., on the UE k, recall that the average

CPU frequency of UE k is ρk, then the computation latency is expressed as
lcomp
P,k = |Dk|

ρk
. similarly, the edge execution delay can be obtained as lcomp

P,b = |Dk|
ρb

,
where ρb is the computing speed of ES b. Finally, the edge execution delay can
be obtained as lcomp

P,C = |Dk|
ρC

, where the ρC is the average computing speed for
each task at the cloud C.

3.2 Knowledge Distillation Model

Each UE has its own dataset Dk, which is transmitted to the server and
aggregated into a distillation dataset D = {Dk|k ∈ K}. After E local training



rounds, each UE model outputs predictions Sk
t and test accuracy Acck on D.

The server model also outputs predictions Ss
t on the same dataset. Each UE

then integrates its own predictions with the server’s predictions, evaluates their
correlation and accuracy, and generates a weight α̂k. Using these weights, the
UE computes its overall prediction Sc

t by summing the weighted predictions:

Sc
t =

K∑
k=1

α̂kS
k
t ,∀t ∈ T . (3)

Knowledge Distillation (KD) trains a student model using soft logits from the
teacher and student models on dataset D, involving task loss and knowledge loss.
involving task loss and knowledge loss. In our framework, multiple UE models
act as the teacher, and the server model as the student, with outputs Ss

t and Sc
t .

The KD loss with distillation temperature θkd is:

Lkd(W
s
t ) = β ∗ LCE(S

s
t , yD) + (1− β)LKL(S

s
t , S

c
t ) ∗ θ2kd,∀t ∈ T , (4)

where W s
t is the student model weight, yD is the ground truth, and β is a balance

weight of classification loss and distillation loss.

4 Propsoed rFedKD Framework

Fig. 1. Training Process of rFedKD

Overview of rFedKD The whole process of the t − th training round in
the proposed framework is shown in Fig.1. In our proposed rFedKD framework,
the training process in the t − th round involves three main stages. First, the
server selects K active UEs based on an activation ratio δ, which uses their
private data Dk to train local models. These models’ predictions Sk

t are sent to



the server. Second, the server calculates weights α̂k for each UE based on the
cosine similarity Simk and accuracy Acck between the UE and server predictions.
Finally, the server updates its model using a weighted sum of UE predictions
and computes the distillation loss Lkd(W

s
t ). Finally, the server model can be

updated based on Lkd(W
s
t ).

Local User Model Training In the local user model training phase, we
employ the ResNet model as the backbone for UEs and set the total local train-
ing steps to E. Each UE updates its local model by minimizing the cross-entropy
loss function L(f(xk,m

k
e), yk) = −

∑I
i=1 y

i
klog(f(x

i
k,m

k
e)), where f(xi

k,m
k
e) rep-

resents the convolution operation within the residual block, and W k
e is the weight

matrix of the local model at training step e. The local model is initialized using
the model from the last communication round, mk

0 = mk
t−1. At each step e, the

UE updates the model via backpropagation:

gt = ∇tL(f(xDk
,mk

e), yDk
),

mk
e+1 = mk

e − ηge = mk
e −∇eL(f(xDk

,mk
e), yDk

),
(5)

and the final local model is mk
t = mk

E .
Weighted Factors Calculating After local training, each UE generates

predictions Sk
t on its dataset Dk. The server computes its own predictions Ss

t on
the same dataset. Based on the cosine similarity Simk = Fc(f(xD,m

k
t ), f(xD,m

s
t ))

and accuracy Acck = Fk(f(xD,m
k
t ), yD) between the server’s and UE’s predic-

tions, the server calculates a weight âk for each UE as

âk =
Simk +Acck∑K

k=1(Simk +Acck)
, k ∈ {1, 2, · · · ,K}, (6)

These weights reflect the correlation and accuracy of each UE’s model, al-
lowing the server to aggregate the predictions effectively.

Server Model Distillation Through the first two steps, we obtain each
UE’s predictions and weights, along with the server’s predictions. Using tradi-
tional KD, the server model is updated by treating the federated UEs as the
teacher and the server as the student. The teacher’s knowledge is derived by
calculating the weighted sum of predictions from the UEs, which is then used to
update the server model. The process is outlined as follows:

W s
t+1 = W s

t −∇tLkd(W
s
t )

= W s
t −∇t{δ ∗ LCE(S

s
t , yD) + (1− δ)LKL(S

s
t , S

c
t ) ∗ θkd

2}.
(7)

5 Experiments

For experimental setups, we compared rFedKD with FEDAVG, FEDPROX,
FEDDFUSION, FEDFTG, and DaFKD. These methods were chosen for their
diverse approaches to federated learning and knowledge distillation, providing
comprehensive benchmarks. Experiments used MNIST, FashionMNIST, SVHN,



(a) MNIST (b) FashionMNIST

(c) SVHN (d) EMNIST

Fig. 2. Accuracy performance with different data heterogeneity on four image datasets

and EMNIST to evaluate performance across different data types. The simula-
tion configuration included 20 local training epochs (E=20), 60 communication
rounds (T=60), and 20 UEs with an activation ratio of 0.2. Local training used
a batch size of 32, a weight decay of 0.001, and a learning rate of 0.01 for distil-
lation. Data heterogeneity was simulated using a Dirichlet distribution Dir(α),
with all training data assigned to user models and test samples used for evalu-
ation. ResNet8 was used as the UE-side model and ResNet11 as the server-side
model to reflect the limitations of the device and the server capabilities.

Table 1. Top-1 Test Accuracy

Datasets Settings FEDFVG FEDPROX FEDFTG DaFKD rFedKD

MNIST,
E=20

α=0.05
α=0.1
α=1

69.11± 1.39
95.16± 0.79
98.11± 0.14

80.77± 0.35
93.21± 0.55
97.08± 0.69

80.95± 1.06
94.43± 0.49
98.47± 0.21

82.33 ± 0.44
95.56 ± 0.41
98.96 ± 0.38

75.90± 1.27
91.88± 2.79
98.08± 0.19

FashionMNIST,
E=20

α=0.05
α=0.1
α=1

30.01± 0.54
67.97± 0.03
82.37± 0.82

39.71 ± 0.23
66.65± 0.08
82.06± 0.53

34.84± 0.77
67.25± 0.14
81.96± 1.86

37.85± 0.24
70.81± 0.21
83.49± 1.32

38.59± 1.00
71.89 ± 2.30
87.92 ± 0.43

SVHN,
E=20

α=0.05
α=0.1
α=10

33.01± 0.12
53.54± 0.21
81.44± 0.01

49.24± 0.16
57.77± 0.86
82.61± 0.34

48.69± 1.87
63.75± 0.11
83.49± 1.32

51.14± 0.16
72.80± 0.11
87.31± 0.85

60.23 ± 0.20
84.83 ± 0.21
88.30 ± 0.06

EMNIST,
E=40

α=0.05
α=0.1
α=10

67.28± 0.14
69.13± 0.23
81.35± 1.03

69.73± 0.17
73.72± 0.55
81.61± 0.71

67.08± 0.97
72.91± 1.87
82.65± 1.04

67.64± 1.86
74.96 ± 0.91
84.60± 1.04

68.71 ± 1.58
69.83± 3.46

86.40 ± 0.54



(a) Accuracy vs. Batch Sizes (b) Loss vs. Batch Sizes

(c) Accuracy vs. LR (d) Loss vs. LR

Fig. 3. Accuracy and loss of different batch sizes and learning rates on the SVHN
dataset

Top-1 Tests Accuracy We evaluated the Top-1 test accuracy of rFedKD
compared to other baseline methods on five image classification datasets, and the
results are shown in Table 1. rFedKD performs well on all datasets, especially in
cases of high data heterogeneity (with small α values). For example, on the SVHN
dataset, the accuracy of rFedKD is 2.09% to 15% higher than the second-best
method at different levels of heterogeneity. These results indicate that rFedKD
can effectively utilize the correlation between user devices and servers to distill
knowledge from multiple smaller models into a larger server model, thereby
improving accuracy.

Communication Rounds We use the number of communication rounds
required to achieve a target accuracy as the QoE evaluation criterion. For each
dataset, we set one or two target accuracy rates and compare the rounds needed
by each model. Table 2 shows that rFedKD achieves the best results across all
datasets, requiring the fewest rounds to reach the target accuracy while also
achieving the highest test accuracy under varying heterogeneity levels (α).

Data Heterogeneity We also analyzed the performance of various methods
under different levels of data heterogeneity, as shown in Figure 2. As data het-
erogeneity increases (α value decreases), the performance advantage of rFedKD
becomes more apparent. For example, on the CIFAR-10 dataset, rFedKD showed
significantly higher accuracy than other methods in cases of high data hetero-
geneity (α=0.05). This indicates that rFedKD is robust when dealing with sce-
narios with significant differences in the distribution of user data.

We conducted experiments on the SVHN and FashionMNIST datasets to
evaluate the sensitivity of rFedKD to specific parameters by varying the sam-



(a) Accuracy vs. Batch Size (b) Loss vs. Batch Size

(c) Accuracy vs. LR (d) Loss vs. LR

Fig. 4. Accuracy and loss of different batch sizes and learning rates on the FashionM-
NIST dataset

Table 2. Communication Rounds That Achieve the Specified Accuracy

Dataset Accuracy FEDAVG FEDPROX FEDFTG DaFKD rFedKD

MNIST,
E=20

acc=85%
acc=90%

25
34s

22
43

24
43

23
40

12
45

FashionMNIST,
E=20

acc=60%
acc=65%

23
40

29
43

33
50

21
37

4
6

SVHN,
E=20

acc=55%
acc=60%

>60
>60

54
>60

35
58

17
20

5
10

EMNIST,
E=40

acc=65%
acc=70%

23
59

22
48

27
42

24
45

19
30

ple batch size (B) and distillation learning rate (ld). As shown in Figure 5 and
Figure 5, the experimental results indicate that smaller batch sizes (such as
32) can achieve higher accuracy and lower testing losses on the SVHNand Fash-
ionMNIST datasets, and converge faster. In addition, we also tested different
distillation learning rates (0.01, 0.001, and 0.0001), and the results showed that
higher learning rates can achieve faster convergence and higher accuracy within
a limited training period. These experimental results indicate that rFedKD is
sensitive to parameter settings, and appropriate parameter selection can signifi-
cantly improve model performance.



6 Conclusion

This study has proposed rFedKD, a federated knowledge distillation frame-
work that eliminates traditional model aggregation and supports diverse model
architectures across devices. Using a dynamic, accuracy-based weighting mech-
anism, rFedKD has enhanced performance in heterogeneous environments, en-
suring higher-accuracy models contribute more significantly to the global model.
Experimental results have validated rFedKD’s competitive accuracy, robustness,
and scalability across datasets. The framework’s dynamic weight adjustment has
promoted efficient model collaboration, offering a promising solution for fed-
erated learning in diverse scenarios. Future work will further optimise weight
parameters and apply the framework to other domains.
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