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Abstract—The Metaverse holds the potential to revolutionize
digital interactions through the establishment of a highly dynamic
and immersive virtual realm over wireless communications sys-
tems, offering services such as massive twinning and telepresence.
This landscape presents novel challenges, particularly efficient
management of multiple access to the frequency spectrum, for
which numerous adaptive Deep Reinforcement Learning (DRL)
approaches have been explored. However, challenges persist in
adapting agents to heterogeneous and non-stationary wireless
environments. In this paper, we present a novel approach
that leverages Continual Learning (CL) to enhance intelligent
Medium Access Control (MAC) protocols, featuring an intelligent
agent coexisting with legacy User Equipments (UEs) with varying
numbers, protocols, and transmission profiles unknown to the
agent for the sake of backward compatibility and privacy. We
introduce an adaptive Double and Dueling Deep Q-Learning
(D3QL)-based MAC protocol, enriched by a symmetry-aware
CL mechanism, which maximizes intelligent agent throughput
while ensuring fairness. Mathematical analysis validates the
efficiency of our proposed scheme, showcasing superiority over
conventional DRL-based techniques in terms of throughput,
collision rate, and fairness, coupled with real-time responsiveness
in highly dynamic scenarios.

Index Terms—Metaverse, Immersive Services, 6G, Beyond 5G,
Self-Sustaining, Non-Stationary, Multiple Access, Medium Access
Control (MAC), Adaptive AI, Continual Learning (CL), Deep
Reinforcement Learning (DRL), and Q-Learning.

I. INTRODUCTION

THE Metaverse is an ever-evolving and transformative
concept poised to establish a dynamic and immersive

virtual realm, blurring the boundaries between the digital and
physical domains and presenting an online environment so
lifelike that it becomes virtually indistinguishable from reality
[1], [2]. Expected to transcend the capabilities of the Internet,
this paradigm harbors the potential to transform a multitude
of service ecosystems across diverse facets of life, including
immersive telepresence facilitated by virtual/extended reality
[3], [4], mobile augmented reality [5], and extensive twinning
leading to intelligent industrialization [6]. Consequently, it
presents novel and unique challenges for the advancement
of future wireless networks [7], which are already striving
to deliver unprecedented levels of quality and capacity as

well as remarkably low energy consumption [8]. As the
Metaverse encompasses diverse worlds, each offering a unique
array of services, ensuring such consistent quality standards
becomes paramount due to the ever-changing nature of this
virtual realm. For instance, the traffic patterns and require-
ments within individual Metaverse User Equipments (UEs)
and across multiple UEs, as they transition between services
and virtual environments, may experience temporal shifts. UE
mobility adds more complexity, leading to varying numbers
of these UEs seeking to transmit data over the spectrum
over time. Moreover, the conditions of the frequency channels
themselves can change, influenced by a multitude of noise
sources and environmental conditions.

Given this dynamic and ever-changing landscape, the re-
alization of future wireless networks relies heavily on the
implementation of adaptive multiple-access algorithms. In this
challenge, dynamic UEs engage in continuous competition for
access to either single or multiple frequency channels. In this
context, where rapid decision-making within microseconds is
imperative, conventional multiple-access techniques designed
for stable conditions or with significant convergence times may
fall short. Despite recent advances in network orchestration
techniques [9], [10], a new paradigm is needed. The concept of
self-sustaining networking emerges as a noteworthy approach
for the 6th generation of wireless communication systems
(6G) [11]. This concept is enabled by adaptive Artificial
Intelligence (Adaptive AI), transforming the traditional ap-
proach of once-in-a-lifetime train models into a new paradigm
of continuous re-training with up-to-date data and evolving
circumstances. In other words, the learning problem will be
viewed as continuous adaptation instead of seeking a fixed
solution [12]. Anticipated as a key catalyst for enabling the
delivery of upcoming services, such as Metaverse applications
[11], Adaptive AI has garnered significant attention in recent
years. Notably, Gartner recognized it as one of the strategic
technology trends for the year 2023 [13].

In recent years, Deep Reinforcement Learning (DRL) has
emerged as a potent tool for enabling adaptive multiple access
to the frequency spectrum in heterogeneous environments.
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While ingenious techniques have been put forth, a critical
challenge remains unattended: the ability to adapt agents
to non-stationary environments. Given DRL’s limitation in
reusing previously acquired knowledge, accommodating each
change could prove time-consuming, especially when contex-
tual shifts occur frequently. Consequently, these aforemen-
tioned approaches prove unsuitable for Metaverse scenarios,
where the environment exhibits remarkable dynamism. The
highly fluid and ever-changing nature of the Metaverse de-
mands more sophisticated solutions that can swiftly adapt to
its volatile conditions. This paper fills in the gap in the current
literature by presenting the following contributions:

• We investigate the problem of multiple access in non-
stationary, multi-channel, and heterogeneous wireless en-
vironments to maximize the intelligent agent throughput
while maintaining fairness. Here, heterogeneity refers to
the coexistence of multiple UEs with different protocols
and transmission profiles unknown to each other, and non-
stationarity is caused by intermittent changes in the set
of active UEs and their transmission profiles.

• To solve the problem, an adaptive DRL-based Medium
Access Control (MAC) protocol based on the Double and
Dueling Deep Q-Learning (D3QL) algorithm empowered
by a symmetry-aware Continual Learning (CL) mecha-
nism is proposed.

• To the best of our knowledge, our work stands as pioneer-
ing in harnessing CL to enhance DRL-based MAC proto-
cols, tailored precisely to suit the distinctive attributes of
the Metaverse. Despite the Metaverse’s dynamic nature,
its state space is finite (detailed in Section II-A). By defin-
ing contexts and leveraging symmetries, the proposed
symmetry-aware CL mechanism exploits prior knowledge
acquired throughout the agent’s lifetime with a greater
potential for backward transfer. We mathematically prove
that using this mechanism, the state space can be reduced
to unique contexts, making the agent more efficient
and responsive to the dynamic, yet finite nature of the
surrounding environment.

• We target to solve the problem considering that the
behavior of incumbent UEs is beyond the agent’s control
(due to considerations of backward compatibility and
privacy preservation) and is governed by their hard-coded
rules.

• Extensive simulations are conveyed to demonstrate that
our proposed scheme can outperform conventional DRL-
based techniques in terms of agent throughput, collision
rate, and fairness constraints.

• Although our approach is designed for the Metaverse
services, it can be adapted to other 6G dynamic services
with similar strict Quality of Service (QoS) requirements.
Furthermore, it introduces some ideas for dealing with
non-stationary wireless networks.

Notably, this paper is an extension of our previous work
[14] with the same setup but with the following major en-
hancements:

• A more heterogeneous environment is considered, com-
prised of UEs with various protocols, including more dy-
namic ones and those with complex and undeterminable
patterns, such as Carrier-Sense Multiple Access (CSMA)
or Channel Hopping (CH).

• The challenge is formulated as a novel optimization
problem that considers variable packet length of UEs,
resulting in explicit dependency between time slots.

• Fairness is considered in addition to agent throughput.
• The D3QL method is leveraged instead of the Double

Deep Q-Learning (DDQL) algorithm.
• The CL mechanism undergoes a complete transformation

by symmetry awareness, and its efficiency is mathemati-
cally investigated.

The remainder of this paper is organized as follows. Section
II introduces the required background and the literature review.
In Section III, the system model is introduced, and the problem
is formulated and analyzed. The proposed strategy is then
presented and investigated in Section IV. Finally, numerical
results are illustrated and analyzed in Section V, followed by
concluding remarks in Section VI.

II. BACKGROUND & RELATED WORK

A. Vision of 6G in the light of the Metaverse

As the long-term vision of digital transformation, the Meta-
verse is considered the inevitable fate of the Internet revolution
and evolution [1], [15]. Furthermore, the Metaverse is an amal-
gamation of various services and use-cases, rather than a single
one [16]: 1) A fully immersive simulation of a plant production
line, stretched out before the manager, projecting a seemingly
endless expanse of conveyor belts and machines with the
ability to control them in real time, or 2) a holographic meeting
room on a lakeshore filled with the avatars of managers
discussing product launch over augmented charts and pipelines
are two ultimate illustrations of a Metaverse-enabled universe.
Fig. 1 illustrates the holographic meeting scenario enabled
through a cloud-network integrated infrastructure empowered
by deterministic and time-sensitive networking [9], [17]. The
5G Public Private Partnership (5G-PPP) Architecture Working
Group [18] identifies massive twinning and telepresence as
inaugural Metaverse use cases [19], [20]. These services re-
quire microsecond-level latency, bounded jitter, multi-gigabit-
level throughput, extremely high reliability, and extremely low
energy consumption [8], with different levels of dependability
on different factors for each service.

In addition to the stringency of QoS requirements and their
heterogeneity, another challenge to realizing the Metaverse is
dynamicity [21]. Following the virtual meeting example, new
users can join and depart from the meeting dynamically, or
their physical mobility at different velocities induces alter-
ations in their points of connection to the system. Additionally,
users have the flexibility to seamlessly shift between different
roles, and the introduction of varied transmitters or alterations
in meeting layouts occurs dynamically, thereby impacting
users’ transmission patterns. Despite these changes influencing
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Fig. 1. A lakeside holographic meeting room in the Metaverse enabled by a cloud-network integrated infrastructure powered by technologies including
deterministic networking, time-sensitive networking, and intelligent medium access control, with end users connected via 6G, 5G, WiFi, and fiber connections.

the system’s state, it is essential to note that the state does
not proliferate indefinitely. For example, suppose there are N
participants in a meeting, each of whom has adopted one of
the Υ transmission profiles. By defining the system state as the
set of active participants along with their transmission profiles,
the total number of states would not be more than (Υ + 1)N .
Accordingly, some states will likely be experienced recurrently
during a session. Hence, there is an opportunity to exploit prior
knowledge in the future with the aim of improving QoS for
users.

Despite the anticipated enhancements in capabilities, such
as semantic awareness [22], and integrated resource allocation
[23], it remains imperative for 6G networks to align with the
specific requirements and characteristics of services intended
for delivery within the Metaverse [1]. Particularly in the pres-
ence of highly dynamic users, the network must demonstrate
swift and dynamic adaptability, promptly adjusting its con-
figuration, allocation, and resource utilization in response to
immediate changes in system states. Spectrum sharing among
a group of ever-fluctuating, all-primary UEs arises prominently
in this context [24]. Coordinating dynamic UEs accessing
the same spectrum requires sophisticated interference manage-
ment and robust contention resolution mechanisms to ensure
their required QoS. One prospective strategy to meet this
challenge involves the incorporation of self-x capabilities
(such as self-management, self-planning, self-organization,
self-optimization, self-healing, and self-protection), resulting
in the formation of a self-sustaining 6G network. A true self-
sustaining 6G network would be built upon intelligent learning
approaches with the capability of exploiting prior knowledge
while adapting to novel occurrences.

In the same vein, MAC protocols should be tailored to
mostly distinct demands of the Metaverse, particularly in

supporting dynamicity due to frequent context transitions,
and inter-operability among various subsystems [15], [21].
Therefore, an ideal MAC for Metaverse should:

• Support multi-channel configuration for enhanced multi-
modal data transmission rates;

• Coexist with multiple devices using unknown protocols;
• Quickly adapt to ever-ending environmental context tran-

sitions, including fluctuations in the number of active
users [12].

In the following, we briefly outline efforts toward an ideal
MAC protocol and will focus on leveraging AI for this in
the next subsection. The emerging field of protocol learning
is gaining momentum, categorized by Park et al. [32] into
three levels: task-oriented neural protocols, symbolic proto-
cols, and semantic protocols that leverage Large Language
Models (LLMs). Additionally, socially aware human-centered
resource allocation introduced in [33] can further enhance
MAC performance in the Metaverse ecosystem. Moreover,
integrating Metaverse application information into the MAC
process as well as predicting upcoming services is another
way to improve the scheme [34]. However, such mechanisms,
particularly leveraging LLMs, are not always feasible in wire-
less networks with non-intelligent legacy devices.

B. AI-based Adaptive MAC Protocols

In recent years, enabling networks with self-sustaining
capabilities has been extensively studied in the literature to
investigate the problem of adaptive multiple access to the
frequency spectrum [35]. For instance, Yu et al. [25] adopted
DRL to design a MAC protocol without assuming the protocol
of other coexisting UEs. They considered a heterogeneous
environment consisting of their designed agent called DLMA,
with a few Time-Division Multiple Access (TDMA) and



TABLE I
SELECTED PAPERS COMPARISON.

Reference Objective(s) Incumbent UEs/Networks Multi-
channel

Variable
Packet Length

Time-varying
Environment

Symmetry
awareness

DLMA [25] Sum Throughput +
Proportional Fairness TDMA + Different Versions of ALOHA - - - -

CS-DLMA [26] Sum Throughput +
Proportional Fairness TDMA + CSMA Networks - ✓ - -

SOMAC [27] Sum Throughput +
Delay TDMA + CSMA UEs - - ✓ -

Chen et al. [28] Intelligent UE Throughput
Various Networks Containing

TDMA, CH,
and Stochastic UEs

✓ - ✓ -

MC-DLMA [29] Sum Throughput
Various Networks Containing
TDMA, Different Versions of

ALOHA and Other Intelligent Agents
✓ - ✓ -

HD-RL [30] Throughput
and fairness

TDMA and
q-ALOHA UEs - - - -

CHMA [31] Average Throughput
and Fairness

TDMA and
ALOHA UEs ✓ - ✓ -

CL-DDQL [14] Sum Throughput TDMA UEs ✓ ✓ ✓ -
Our Approach

(CL-D3QL)
Agent Throughput

with Constrained Fairness
Various TDMA, CSMA and

CH UEs ✓ ✓ ✓ ✓

[14] is our previous work.

ALOHA UEs competing over a slotted uplink channel. The
same authors extended their work to non-uniform scenarios,
in which channel sensing requires a single time slot but
information packet transmission requires multiple time slots
[26]. Following the idea of utilizing DRL for various scenarios
of adaptive multiple access problems, Jadoon et al. [36] uti-
lized DRL to optimize both throughput and packet age. Their
research is compatible with machine-type communications on
the assumption that the UEs are not saturated. Doshi et al.
[37] formulated the coexistence of multiple base stations over
a shared channel, optimizing the signal-to-interference-plus-
noise ratio of UEs. Besides, Guo et al. [38] developed a
solution for multi-agent scenarios to support delay-sensitive
requests. Gomes et al. [27] proposed SOMAC, an RL-based
algorithm that switches between TDMA and CSMA protocols
according to the network situation. Chang et al. [39] incor-
porate federated learning and multi-agent DRL to design a
collaborative distributed spectrum access strategy. Authors of
[40] propose a multi-dimensional intelligent multiple access
considering disparate resource constraints among heteroge-
neous equipment. Ni et al. [30] present HD-RL, a dynamic
wireless channel-sharing solution that leverages lightweight
hyperdimensional computing to enhance spectrum utilization
and channel capacity in wireless networks. Han et al. [31]
introduce CHMA protocol, which integrates curriculum learn-
ing (i.e., a learning technique that gradually increases the
difficulty level of tasks) and reinforcement learning to enhance
the throughput and fairness of the system.

Additionally, there are research proposals in the existing
literature that extend AI-based MACs to multi-channel scenar-
ios. Because every UE is only aware of the channel on which
it resides, this scenario has an inherent difficulty that can be
described as partial observability [28]. As an instance, Chen et
al. [28] proposed a dueling deep recurrent Q-Network to solve

the PSPACE-hard problem of multiple access in the presence
of various co-existing networks. Ye et al. [29] investigated
the same problem and proposed the MC-DLMA protocol
that outperforms the random access policy, the Whittle index
policy, and the original DQN. The literature on DRL-based
adaptive MAC is becoming a rich research area, expanding
in many directions including the number of intelligent agents
(i.e., multi-agent RL), number of channels, compatibility with
standardized mechanisms, customization for special scenarios
such as the Internet of Things (IoT), etc. In this vein, the
interested reader may find [41] and [42] insightful. In Table
I, we provide a comparison among selected MAC protocols
for heterogeneous environments, wherein the intelligent agent
coexists alongside multiple UE types using unknown MAC
protocols.

Even though the heterogeneity problem has been addressed
in existing literature, the non-stationary nature of Metaverse
services has remained mostly untouched. This paper fills in the
gap by introducing a novel approach that takes into account the
repetition of states over time, providing deeper insights into
temporal dynamics and the patterns that arise from these repe-
titions. Similar to Yu et al. [26], we assume UEs with variable-
length packets as this is more practical than fixed-length
packets [25]. Unlike Yu et al. [26], however, our approach
takes multiple channels into account, making it even more
applicable in high-bandwidth Metaverse environments. Fur-
thermore, we leveraged intrinsic symmetries in the multiple-
channel setup to develop more efficient context management,
a previously unexplored approach in the existing literature.
Finally, in line with the literature, we assume a saturated
traffic pattern where users continuously transmit information
streams, with task management occurring at the upper layer.
This assumption also aligns with Metaverse applications like
holographic meetings (illustrated in Fig. 1), where users utilize
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III. PROBLEM DEFINITION

A. System Model

We consider a single small cell covered by a Small Base
Station (SBS) with N heterogeneous UEs each uniquely
labeled as ui, i ∈ N = {0, . . . ,N} (see Fig. 2). Except
for one (i.e., the CL-D3QL agent, or simply the agent,
denoted with u0), all UEs are assigned a channel for each
time slot among C time-slotted channels ∈ C = {0, . . . , C}
and designed to occupy that channel by transmitting their
packets using either Time-Division Multiple Access (TDMA),
Carrier-Sense Multiple Access (CSMA), or Channel Hopping
(CH) protocols. As an illustrative example, we consider the
Metaverse scenario described in section II-A wherein various
services with different QoS requirements and multiple access
protocols coexist. In this ecosystem, TDMA protocol can
be used within different services to integrate physical and
virtual worlds through digital twinning [15]. For instance, a
headset may send visual recordings to its control center every
millisecond. Conversely, CSMA and CH are more complex,
yet non-intelligent protocols deployed to offer more advanced
services. For the sake of backward compatibility and privacy
preservation, the internal functionality and microstates of
incumbent protocols (i.e., TDMA, CSMA, and CH) are beyond
the scope of agent observation and control.

The environment is non-stationary due to the fluctuating
number of active incumbent UEs, in addition to the transmis-
sion profiles they may adopt. Frequent changes in the number
of active users or transmission profiles, which is common in
the Metaverse, can be attributed to various factors, including
users’ mobility, role, layout, and transceivers, as mentioned in
the previous sections. As an example in the headset scenario,
if the user changes the role from an actor to a viewer,
the UE may proceed to the inactive mode to only provide
vital functionalities; thus, data may be transmitted every ten
milliseconds. A context is defined as a collection of active UEs
with unique identifiers on specific channels. For instance, if we

have two UEs {0, 1} and two channels {1, 2}, UE 0 on channel
1 and UE 1 on channel 2 would constitute a simple context,
whereas having only UE 0 active in the network sending over
channel 1 would be a different context. Context transitions
occur when a UE enters or leaves a channel or changes its
transmission profile1. In this paper, it is posited that changes
in expected throughput are the primary driver of changes in
transmission profiles.

It is assumed that the agent is informed of the arrivals and
departures of other UEs on each channel along with their
expected throughputs via the SBS2. However, the agent is
unaware of the transmission protocols and packet lengths. Note
that we assume UEs with variable-length packets. The agent’s
transmissions are independent of the SBS to avoid unnecessary
signaling overhead in scheduling grant decoding. However, it
relies on the SBS’s ACK signals issued at the end of each
packet transmission (or channel sensing) to indicate successful
transmission (or channel idleness). The transmission of control
messages is assumed to occur over a separate, collision-free
channel.

B. Problem Formulation

In this subsection, we introduce a Mixed-Integer Non-Linear
Programming (MINLP) formulation to define the problem. The
subsequent subsection will provide additional details on the
variables, constraints, and objective function of the problem.

1) Decision and Support Variables: The primary integer
decision variable in our problem is R = [rtc]C×T , where each
element represents the size of the packet that the agent (i.e.,
u0) begins to transmit on channel c at the start of time slot
t. Additionally, Z = [ztc]C×T denotes an auxiliary integer
variable indicating the remaining time slots for the ongoing
transmission. The variable M = [mt

c]C×T serves as another
auxiliary variable, set to one whenever ztc is positive. The
following constraints transform the equation mt

c = 1(ztc > 0)
into a linear form:

mt
c ≤ ztc, (1)

mt
c ·Rmax ≥ ztc,

where Rmax is the maximum allowed packet size. Table
III demonstrates all variables and constants, where symbols
marked with ˆ sign are constants that are determined outside
of the problem scope.

2) Temporal Interdependency Constraints: Now, we need
to establish interdependency over time. First, we must ensure
that z decreases by one with each passing time slot for ongoing
transmissions. This requirement is enforced by the following
constraint.

ztc = zt−1
c − 1 if

(
(mt

c = 1) ∧ (dtc = 0)
)

(2)

1Changing the transmission profile will create a new identifier for UEs (for
the sake of simplicity).

2While the SBS has complete knowledge of the past, it has no knowledge
of the future, including which users will transmit packets with which lengths
and transmission profiles in upcoming time slots.



This constraint can be expressed in its linear equivalent forms
as follows:

ztc ≤ (zt−1
c − 1) +

(
Rmax ·

(
(1−mt

c) + dtc
))
, (3)

(zt−1
c − 1) ≤ ztc +

(
Rmax ·

(
(1−mt

c) + dtc
))
,

where D = [dtc]C×T is a binary variable used to activate
decision making over specific time slots.

Second, it must be ensured that a new transmission is
not initiated until the ongoing one is completed. To achieve
this, we establish a set of constraints based on the premise
that whenever the agent initiates the transmission of a packet
with length k at time slot t, the activation variables for the
subsequent k − 1 time slots must be zero (i.e., dτc = 0 ∀τ ∈
[t+ 1, t+ k − 1]):

rtc = k →
t+k−1∑
τ=t+1

dτc = 0 ∀k ∈ [1, Rmax] (4)

This can be expressed in its linear equivalent form as follows
(where K1 and K2 are auxiliary binary variables, both equal
to one when rtc = k):

(rtc − k) + 1 ≤ Rmax ·K1

(k − rtc) + 1 ≤ Rmax ·K2

t+k−1∑
τ=t+1

dτc ≤ Rmax · (2− (K1 +K2)) (5)

3) Packet Length Constraints: Next, we establish the rela-
tionship between the packet length variable r and the support
variables z and d using (6), where r is equal to z when
transmission starts:

rtc =

{
ztc if dtc = 1

0 if dtc = 0
(6)

We then transform (6) into a linear form, similar to previous
constraints:

rtc ≤ ztc +
(
Rmax · (1− dtc)

)
(7)

ztc ≤ rtc +
(
Rmax · (1− dtc)

)
rtc ≤ Rmax · dtc

A simple example, as illustrated in Fig. 3, demonstrates the
values of r and the other auxiliary variables. It is important
to note that in a single time-slot scenario, the variables r, z,
m, and d are equal and binary.

4) Physical Constraints: Constraints (8) and (9) ensure that
the agent can transmit on at most one channel during each time
slot, and the agent can transmit on a channel not occupied by
an incumbent UE (as specified by m̂t

i,c). These constraints
enhance system scalability by narrowing the search space for
potential transmissions.∑

c∈C
mt

c ≤ 1 ∀t ∈ [0, T ] (8)

mt
c ≤ 1− 1

( ∑
i∈N−{0}

m̂t
i,c > 0

)
∀c ∈ C,∀t ∈ [0, T ] (9)

0 5 0 0 0 0 0 0 2 0 0r

0 1 0 0 0 0 0 0 1 0 0d

0 5 4 3 2 1 0 0 2 1 0z

0 1 1 1 1 1 0 0 1 1 0m

Start transmission of a packet 

with length 5

Start transmission of a packet 

with length 2

1 2 3 4 5 6 7 8 9 10 11t

Fig. 3. A scenario in which the agent initiates the transmission of packets
with lengths 5 and 2 at time slots t = 2 and t = 9, respectively. The values
of the decision variable r, along with the support variables d, z, and m, can
be compared accordingly. At the start of transmissions, both r and z equal
the packet length, but z decrements each time slot to enable the calculation
of the per time slot transmission indicator m.

5) Normalized Throughputs Constraints: The expected
throughput of incumbent UEs is set according to their hard-
coded rules, as shown in Table II. TDMA and CSMA nodes
transmit on a single channel, while CH nodes split their traffic
equally across the channels. The expected throughput of the
intelligent agent is set to 1, as it is expected to reach the
throughput of 1 in the absence of other UEs.

Eq. (10) restricts the normalized throughput of the agent
(i.e., its actual throughput divided by target (fair) through-
put) to one for all time slots, prohibiting it from aggressive
behavior. Target throughputs are calculated by a water-filling
algorithm f(.), guaranteeing that each UE receives a mini-
mum of available channel share and its expected throughput,
as detailed in Algorithm 1. This function receives X̂

t
=

{x̂t0,0, x̂t0,1, ..., x̂tN ,C}, and returns a vector indicating the target
throughput of all UEs for all channels3. Remarkably, since χt

c

in the denominator of (10) is derived from the heuristic Water-
filling algorithm, it does not introduce additional complexity
to the problem to be defined in the next section.

xtc =
1

h
·
∑

τ∈[t−h,t]

rτc

χt
c = f(χ̂t)[0, c]

xtc
χt
c

≤ 1 ∀c ∈ C,∀t ∈ [h, T ] (10)

6) The Problem: The problem is to maximize the intelligent
agent throughput over its lifetime, denoted by T time slots,
taking into account the channels and transmission profiles of

3As an example, assume that X̂ t
= [0.9, 0.5, 0.1] in a single-channel

network. The water-filling algorithm returns [0.45, 0.45, 0.1], with the jus-
tification that the third UE does not need more than 10%, and the rest is
divided equally between the first and second UEs. Note that these calculations
are extensible to situations where different UEs have different priorities by
assigning non-equal weights in the water-filling algorithm.



TABLE II
EXPECTED THROUGHPUTS FOR DIFFERENT PROTOCOLS

Protocol Expected Throughputs

TDMA
packet length

duty cycle
on single channel

CSMA
packet length

packet length +
window size

2

on single channel

CH
1

C
on all channels

CL-D3QL 1 on all channels

TABLE III
NOTATIONS OF SYMBOLS USED IN THE PROBLEM.

Symbol Description

rtc
Size of the packet the agent starts transmitting

on channel c at the beginning of time slot t

ztc
Number of time slots remaining until

the current transmission on channel c ends

mt
c

An indicator for transmission of the agent
on channel c in time slot t

m̂t
i,c

A constant indicator for transmission of UE i ∈ N− {0}
on channel c in time slot t

dtc
An indicator for decision-making of the agent

on channel c in time slot t

xt
c Actual throughput of the agent on channel c

χt
c Target (fair) throughput of the agent on channel c

χ̂t
i,c Expected throughput of UE i on channel c

Algorithm 1: Water-Filling

Input: X̂
Result: X

1 xi,c ← 0 ∀i ∈ N,∀c ∈ C, ϵ← 0.01
2 for c ∈ C do
3 r ← 1
4 while r > 0 do
5 for i ∈ N do
6 if xi,c < x̂i,c then
7 xi,c = xi,c + ϵ
8 r = r − ϵ

the incumbent UEs without degrading their actual throughput,
as formulated in (11).

max
r

∑
h≤t≤T

∑
c∈C

xtc s.t: (11)

Variables’ interdependencies acc. to (1), (3), (5), (7),

Physical channel constraints acc. to (8), (9),

Fair behavior constraint acc. to (10)

C. Complexity Analysis

Assuming that all the information of all time slots is known
beforehand, or equivalently, all incumbent UEs have known
deterministic transmission patterns, problem (11) could be
solved with linear programming methods. With this assump-
tion, the agent would know in which time slots and on which
channels it must transmit data to maximize its throughput
while satisfying the fairness constraint (Eq. (10)). However,
our problem belongs to the class of Partial Observable Markov
Decision Problems (POMDP). Partial Observability is due to
the following reasons. First, the agent is only aware of the
channel it is sensing or transmitting a packet on. Secondly,
the result of each multi-slot transmission is only known at
the end. Thirdly, the system state is known till the time slot
we are already in. The agent does not know what UEs will
arrive in the coming time slots and what transmission profiles
they will take. Lastly, the reaction of some other UEs is
excessively complex to determine in an unknown environment.
In particular, CSMA UEs adjust their window sizes randomly
after a collision. Without this information, we cannot optimally
solve problem (11). Nonetheless, since the problem complexity
has a linear relationship with time; the number of incumbent
users; and the number of channels, scalable approaches are
preferred.

IV. SOLUTION APPROACH

A. Learning Mechanism

To handle the high level of self-sustaining required to
address the heterogeneity and dynamism of the Metaverse
environment [15] and solve problem (11) in practical scenar-
ios, RL is the learning mechanism adopted in this paper. An
agent in RL learns through trial and error how to optimize
a given decision-making problem (e.g., multiple access in
wireless networks). The designer of the system specifies the
reward function regarding the predefined design goals, and
by learning and following the optimal strategy, the agent
will maximize cumulative discounted rewards starting from
any initial state. Q-learning is probably the most recognized
among the different algorithms introduced for model-free RL
problems [43]. Each state-action pair is assigned a numeric
value in Q-Learning, known as the Q value, and this value
is gradually updated by the following equation, which is the
weighted average of the old value and the new information,
that is

Q(st, at) += σ[Y t
QL −Q(st, at)], (12)

where st and at are the agent’s state and action at time slot
t respectively, σ is a scalar step size, and Y t

QL is the target,
defined by

Y t
QL = ρt+1 + γ maxa∈AQ(st+1, a), (13)

where ρt+1 is the earned reward4 at time slot t+1, γ ∈ [0, 1]
is a discount factor that balances the importance of immediate
and future rewards, and A is the set of actions.

4In the literature, the reward is typically represented by r, but here we use
the Greek symbol ρ to avoid confusion with variable r used for packet size.



Since the problem defined in (11) is impractical to discover
all possible combinations of states and actions and learn all
state-action values, DQL is a ground-breaking improvement to
approximate them, in which a Deep Neural Network (DNN) is
used as an approximator for Q values [44]. In DQL, the state
is provided as the input, and the DNN-based Q function of all
possible actions, denoted by Q(s, .;W), is generated as the
output, where W is the set of DNN parameters. The target of
DQL is

Y t
DQL = ρt+1 + γ maxa∈AQ(st+1, a;Wt−), (14)

and the update function of W is

Wt+1 = Wt

+ σ[Y t
DQL −Q(st, at;Wt)]∇Wt

·Q(st, at;Wt). (15)

To improve the efficiency and stability of DQL, the observed
transitions are stored in a memory bank known as the experi-
ence memory, and the neural network is updated by randomly
sampling from this pool [44].

To further increase DQL’s efficiency, we employ the idea
proposed by Hasselt et al. [45], resulting in Double DQL.
In both standard Q-Learning and DQL, the max operator is
used to select and evaluate actions with the same values (or
the same Q). As a result, optimistic value estimates are more
likely to be chosen, due to the greater likelihood of selection
of the overestimated values. Double DQL implements decou-
pled selection and evaluation processes. The following is the
definition of the target in Double DQL.

Y t
DDQL = ρt+1 + γ Q̂(st+1, a′;Wt−), (16)

where a′ = argmaxa∈AQ(st+1, a;Wt), and the update func-
tion is resulted by replacing Y t

DQL with Y t
DDQL in (15). In

this model, W represents the set of weights for the main (or
evaluation) Q and is updated in each step, whereas W− is
for the target Q̂ and is replaced with the weights of the main
network every t̂ ≫ 0 steps. In other words, Q̂ remains a
periodic copy of Q.

In addition, we enhance Double DQL by integrating it with
the dueling idea proposed by Wang et al. [46]. In contrast to
the Double DQL, where Q values are directly approximated
by DNNs, this method first calculates two separate estimators
for state values and action advantages, denoted by V and A
respectively, and then determines Q values based on these
estimators as (17), where A is the action space.

Q(st, at;Wt) = V(st;Wt)

+

(
A(st, at;Wt)

− 1

|A|
∑
a′∈A

A(st, a′;Wt)

)
(17)

The primary benefit is the ability to generalize learning across
actions without modifying the learning algorithm, which im-
proves policy evaluation in the presence of numerous actions
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Fig. 4. The D3QL agent.

with similar state values. As a result of combining the Dueling
technique and Double DQL methods (represented in Fig. 4),
we can expect that the resultant D3QL agent will outperform
its predecessors.

Finally, in practice, the agent training process described in
this section could be offloaded to an external computing entity
such as an edge server, or a cloud server residing in the SBS.
If so, delays introduced due to the imperfection of the agent-
server channel should be considered.

B. Agent Customization

The first step toward exploiting D3QL to solve problem (11)
is to define the agent’s action, reward, and state space.

1) Action Space: We define the action space as set A =
{a : (r, c)|r ∈ {0, ...,R}, c ∈ {1, ..., C}}, and the action of
time slot t is either at : (0, ct), which indicates sensing channel
c, or at : (tt > 0, ct), which denotes the transmission of
a packet with length r on channel c. The agent controls its
actual throughput on channel c at each time slot by adjusting
its packet length.

Example: In a lightweight context, UE 0 may choose to
transmit a packet of maximum-length, say 5, on the third
second in time slot t. In this case, the action will be at0 : (5, 2).

2) State Space: In the case of sensing channel c, the
observation set would be o = {B: Busy, I: Idle}, whereas
it would be o = {S: Success, C: Collision} in the case of
packet transmission. The state of the agent, as defined in (18),
is the sequence of the most recent H (observation, action)
tuples, along with the normalized throughputs of the agent
per channel. The latter term provides a broader insight into
how the agent can improve its objective function.

st =

{{
(oτ , aτ )|τ ∈ {t−H, ..., t}

}
,

{
(
xtc
χt
c

)|c ∈ C
}}

(18)

As mentioned in the previous section, we are dealing with a
POMDP, thus note that the state space is a subset of the total
system state available to the agent.



Example: In the example above, the UE 0
choice to transmit a maximum-length packet may
stem from its previous success on the second
channel and its low normalized throughputs, like:

st0 =

{{
(I, (0, 2)), (S, (4, 2)), (S, (4, 2))

}
,
{

0.5
0.7 ,

0.2
0.7

}}
,

where H = 3. and C = 2

3) Reward: Since the agent is designated to maximize its
throughput while not deteriorating the throughputs of others,
the reward should be engineered to reinforce the throughput
maximization but penalize the violation of fairness. This goal
is satisfied in (19) while providing additional guidance by
reinforcing channel sensing and penalizing collisions.

ρt+1 =

 rt −M · ψt if ot = S
−rt −M · ψt if ot = C
µ if ot ∈ {B, I}

(19)

In this equation, ψt is max
{
(xtc − χt

c), 0
}

, M ≫ 1 is a
large constant, and µ ≪ 1 is a small constant to incentivize
channel sensing. The value ofM should be sufficiently high to
discourage the agent from transmitting and receiving packet-
transmission rewards in unfair situations. Additionally, µ must
be low enough to prevent lazy behaviors while encouraging
the agent to sense the channel in uncertain situations. In our
simulations, we set these values to 5 and 0.1, respectively.

Example: Following the previous example, the reward
after successful transmission of the packet equals 5 − M ·
max

{
(0.2− 0.7), 0

}
= 5. In case of an unexpected parallel

transmission from another UE, caused by an inadequately
trained approximator or a change in context, the reward will
be −5.

4) Approximator: The evaluation network of the D3QL
agent is detailed in Fig. 5. In this module, the first part of the
state is fed to a Long Short-Term Memory (LSTM) feature
extractor to discover temporal patterns. Besides, the second
term in the state is directly fed to Fully Connected (FC)
layers, as it provides longer-term knowledge about the system.
Afterward, two sequences (or streams) of fully interconnected
layers are utilized. The streams are designed to provide two
separate estimators for state values and action advantages.
The estimators are then combined via an aggregation layer
to produce Q values. Due to the non-uniformity of actions
regarding the various packet lengths, the target function in
(16) must be transformed as follows:

Y t
⋆ =

(1− γrt)
(1− γ) rt

ρt+1 + γr
t

Q̂(st+1, a′,Wt−). (20)

For actions of packet length 1 (sensing the channel or send-
ing a single time slot packet), (16) and (20) are obviously
equivalent. However, future time slots are discounted for larger
packages.

Example: If the transition in the example above is used
for training, the target value equals (1−0.95)

(1−0.9)· 5 5 + 0.95 ·
Q̂(st+1, a′,Wt−), where γ = 0.9. Since the transmission of
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Fig. 5. The evaluation network of D3QL Agent (Fig. 4).

this packet lasts 5 time slots, the effect of the next-state Q-
value decreases.

C. CL Mechanism

To accommodate the non-stationary nature of the envi-
ronment practically, the proposed D3QL agent should be
enhanced to remember previously learned contexts and re-run
the training procedure for new contexts [47]. To accomplish
this, a CL mechanism is proposed and detailed in Algorithm
2. In this algorithm, ϵ′ and ϵ̃ are small positive integers used to
control the ϵ-greedy mechanism. Through each step, the SBS
informs the agent of any probable change in the set of active
users. If so, the agent saves the current experience memory
and weights before examining the recorded context references
(Ω). If the current context (ϕ) has been viewed previously
(i.e. if the current context has at least one transformation that
is equivalent to one of the recorded context references), the
agent loads the corresponding context reference (or simply the
reference, denoted by ϕ̂) along with its experience memory
and weights. Otherwise, the current context will be added
as a new context reference to Ω. Next, the action is chosen
through steps 10 to 16 following the ϵ-greedy policy that
follows the evaluation function of the corresponding agent
with probability (1 − ϵ) and chooses a random action with
probability ϵ. Whenever Q is used, St is first transformed from
the state space of ϕ to that of ϕ̂, then the action is determined,
and the selected channel is detransformed to the state space
of ϕ so that it is applicable to the environment (since ϕ is
currently active in the environment). Finally, the reward and
observation are collected, transformed, and used to update the
weights of ϕ̂ via the experience memory. During the training
process, the probability decreases from ϵ to ϵ̃.

We denote the set of active users at time slot t with
Mt = {mt

c|c ∈ C} where mt
c is the set of all UEs

belonging to channel c at time slot t. In the recognition of
contexts, we exploit the permutability of Mt over channels,
where a permutation of Mt has the same members but with
different channel indices. In this way, the context defined
by Mt can be loaded and trained for all of its possible
permutations. As a simple example, {UE 0 on channel 1



Algorithm 2: Symmetry-aware CL-D3QL
Input: T , ϵ′, and ϵ̃

1 Ω← ∅, W ← 0, W− ← 0, ϵ← 1, memory ← {}
2 for t in [0 : T ] do
3 if new context ϕ is announced then
4 save the current context memory and weights
5 if Ω contains a transformation of ϕ then
6 ϕ̂← load the transformation
7 reload W ,W−, and memory of ϕ̂
8 else if ϕ /∈ Ω then
9 Ω← Ω ∪ {ϕ}

10 ζ ← generate a random number from [0 : 1]
11 if ζ > ϵ then
12 ŝt ← transform st to the state space of ϕ̂
13 (r, ĉ)← argmaxa∈AQ(ŝt, a,W)
14 c← transform ĉ to the state space of ϕ
15 else
16 select a random (r, c) from A
17 transmit the packet, and get ot and ρt+1

18 calulate st+1

19 ŝt+1 ← transform st+1 to the state space of ϕ̂
20 memory ← memory ∪ {(ŝt, (r, ĉ), ρt+1, ŝt+1)}
21 choose a batch of samples from memory
22 train the agent using (15) and (20)
23 if ϵ > ϵ̃ then
24 ϵ← ϵ− ϵ′

and UE 1 on channel 2} and {UE 0 on channel 2 and
UE 1 on channel 1} would constitute a single context, with
permutation {1 ← 2, 2 ← 1}. This approach, which is
inspired by the concept of group symmetries [48], leads to
more repetitive contexts and thus, greater backward transfer
capability. However, a more complex agent design is required,
since the agent has to transform/detransform its actions and
observations to be consistent across time.

Example: If we consider the example of previous sec-
tion and UE 0 enters a new context that is the re-
verse of the previous one, it can easily re-use its cur-
rent approximator by transforming its state into: ŝt0 ={{

(I, (0, 1)), (S, (4, 1)), (S, (4, 1))
}
,
{

0.2
0.7 ,

0.5
0.7

}}
D. Efficiency Analysis

Since there is no remembering in the pure D3QL technique
(without the CL mechanism), every transition introduces a new
context, and the number of encountered contexts grows as
the agent continues to interact with the environment. Now,
if we can prove that the CL mechanism restricts the number
of encountered contexts, we can expect the CL-based D3QL
agent to behave more efficiently in dynamic environments by
decreasing the size of its state space. Assume Υ is the number
of unique UE types and keep in mind that C is the number of
channels. Due to the fact that our proposed CL mechanism is
symmetry-aware and UEs can be distinguished by their type

(e.g., transmission profile, protocol, etc.), the number of UEs
can be reduced to the number of UE types when investigating
contexts.

To determine a bound for the number of contexts of the
CL-D3QL mechanism, it is necessary to solve the problem of
determining the number of with-replacement selections of C
items from Υ distinct items. Let’s refer to the set of UE types
as Υ = {1, 2, 3, ...,Υ}. Any selection of C elements from the
Υ possibilities with repetition can be described as a tuple of
size C with non-decreasing and distinct entries, that is

(υ1, · · · , υC), where 1 ≤ υ1 ≤ υ2 ≤ · · · ≤ υC ≤ Υ. (21)

Now, consider that (η1, η2, · · · , ηC) is a new tuple of size C
obtained from (υ1, υ2, · · · , υC) as follows.

(η1, · · · , ηC) =
(
υ1, υ2 + 1, υ3 + 2, · · · , υC + (C − 1)

)
(22)

Consequently, the subsequent conditions are met: I) 1 ≤ η1 <
η2 < · · · < ηC ≤ Υ+C−1, II) each υ-tuple can be represented
by a unique η-tuple, and III) every tuple (ϱ1, · · · , ϱC) of size
C with 1 ≤ ϱ1 < ϱ2 < · · · < ϱC ≤ Υ + C − 1 corresponds
to an υ-tuple, that is

(
ϱ1, ϱ2 − 1, ϱ3 − 2, · · · , ϱC − (C − 1)

)
,

which will satisfy 1 ≤ ϱ1 ≤ ϱ2 − 1 ≤ ϱ3 − 2 ≤ · · · ≤
ϱC − C + 1 ≤ Υ. Therefore, counting υ-tuples (that is
the number of with-replacement selection of C items from
Υ distinct items) is equivalent to counting η-tuples. The
advantage of this approach is that in order to count η-tuples, it
is sufficient to count the number of possible C-tuples chosen
from {1, 2, · · · ,Υ + C − 1} without replacement, which is
equal to

(
Υ+C−1

C
)
. It proves that the number of contexts for

the symmetry-aware CL-D3QL mechanism is limited.
Fig. 6 depicts the number of unique contexts for various

numbers of channels and UE types. In this figure, the number
of active UEs is fixed, and the results are captured after
extremely lengthy runs. As can be seen, the calculated bound
serves as the upper limit for CL-D3QL in both cases. Note that
in Fig. 6-B, D3QL is unaware of symmetry and, regardless of
the UE type, it considers each UE to be unique. Therefore,
it is dependent on the (fixed) number of active UEs in the
environment and not the number of UE types. It means that
when the numbers of channels and active UEs do not change
if the number of UE types is high, the likelihood of symmetry
detection is low, and CL-D3QL would be approximately as
efficient as D3QL.

V. EVALUATION

Within this section, a numerical analysis is conducted to in-
vestigate the effectiveness of the proposed CL-D3QL method.
The hyper-parameters and configurations obtained from best
practices in the literature, followed by extensive trial and error
and heuristics, are listed in Table IV. To test the efficacy
of our strategy, we carried out a series of experiments on a
computer running a 64-bit operating system equipped with 16
NVIDIA Tesla V100 GPUs and 10 gigabytes of Non-Volatile
Memory express (NVMe) storage. PyTorch library was utilized
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Fig. 6. The maximum number of experienced contexts with the D3QL
algorithm (in which any change in the set of users constitutes a new context)
and the symmetry-aware CL-D3QL algorithm vs. the number of channels and
the number of UE types. Note that in A, the number of UE types is 6, whereas
in B, the number of channels is 3. In addition, the number of active UEs in
both scenarios is fixed.

to effectively implement both the evaluation and target LSTM-
based networks. In each experiment, comparisons are made
between the CL-D3QL, D3QL, and Random algorithms. The
difference between the CL-D3QL and D3QL agents is that
the CL-D3QL agent has a CL mechanism, whereas the D3QL
algorithm lacks remembrance, so each announced context
always appears to be new to it. Moreover, the D3QL algorithm
can be considered an enhanced form of the conventional DQL
algorithms, including the DLMA protocol groups (i.e., DLMA
[25], CS-DLMA [26], and MC-DLMA [29]) discussed in the
literature review section. Remarkably, none of the mentioned
algorithms are equipped with dueling and double mechanisms,
nor do they support normalized throughputs for the agent in
the state space to inform it about fair behavior. Finally, the
Random agent selects a random action over a random channel.
This will be accomplished without any prior knowledge or any
specific adjustments being made to the configuration.

To compare algorithms, we use three partially conflicting
metrics: the agent’s normalized throughput, collision rate, and
Jain fairness index. The agent’s normalized throughput is
computed by summing the length of the packets successfully
transmitted over the last 1000 time slots (excluding headers)
and dividing it by the sum of target throughputs on all chan-
nels. The collision rate is the ratio of collision observations to
total observations in the last 1000 time slots. Finally, the Jain
fairness index measures the fairness among the normalized
throughputs of UEs at time slot t by the following formula.

TABLE IV
TRAINING CONFIGURATION.

Parameter Value
Maximum packet length (R) 5 time slots

Packet header size 0.5 time slot
State size (H) 4 experiences

Capacity of experience memory 1000 experiences
Batch size 32

Discount Factor (γ) 0.9
Learning rate 0.001

Exploration parameters ϵ̃, ϵ′ 0.005, 0.999

Approximator model LSTM with 64 units +
fully connected with 64 and 32 units

Training frequency Every 10 steps
Target network update frequency Every 50 steps

Reward penalties M and µ 5, 0.1

Note that the normalized throughputs of UEs are calculated in
the same manner as the agent.

J t =

(∑
i∈N

xti,c
χt
i,c

)2

N ·
∑

i∈N

(
xti,c
χt
i,c

)2 (23)

In the first scenario, we establish fixed context transition points
to illustrate the efficacy of our strategy better. Then, in the
second scenario, we evaluate our scheme in a more realistic
and Metaverse-esque setting by assuming stochastic transition
points and context specifications. Finally, we measure the time
complexity of different approaches for a variable-length sce-
nario, along with reward plots from training, to gain insights
into convergence.

A. Scenario 1: Fixed Change Points

In this scenario, it is assumed that context transitions occur
at specific times, as outlined in Table V. TDMA(p, τ, w)
identifies a TDMA UE that transmits a packet of length p
beginning on the τ -th time slot of each frame with duration w.
CSMA(p, w,wmax) also identifies a CSMA UE that transmits
a packet of length p whenever its window size reaches 0. The
default window size and maximum window size are specified
with w and wmax, respectively. Lastly, CH(p, d) relates to a
channel-hopping UE with packets of length p and the hopping
direction of d ∈ {1,−1}.

This scenario represents a realization of the holographic
meeting room example outlined in section II-A, where a man-
ager discusses a product launch using a head-mounted VR de-
vice. The device employs either CL-D3QL or D3QL schemes
to adjust its transmissions. Simultaneously, a digital twin
of the production line environment is supported by TDMA
nodes. Additionally, to facilitate semantic-aware knowledge
distribution among users, known as Knowledge Bases (KBs)
[22], delay-tolerant CSMA nodes are also present. Frequent
transitions occur in the environment due to changes in the pro-
duction line state and required KB distribution. For example,



TABLE V
SCENARIO 1: UE PROFILES AND THEIR CHANNELS ON EACH PERIOD

Profile [0: T /4] [T /4: T /2] [T /2: 3T /4] [3T /4: T ]
TDMA(3, 0, 8) 1 1 - 1
TDMA(3, 4, 8) 2 3 - 2
CSMA(2, 4, 6) 1 1 - 1
CSMA(3, 4, 8) 3 2 2 3
CSMA(1, 4, 6) 3 2 2 3

CH(2, 1) - - 1,2,3 -

during the brainstorming phase in the third quarter, there is no
need to connect to the product line, thus disabling the TDMA
nodes to save resources. The following paragraph will show
that using CL-D3QL instead of D3QL improves QoS/QoE for
the manager during known transitions, without compromising
essential TDMA and CSMA functionalities.

Obviously, the first and final quarters of the simulation
take place in the same context; therefore, the CL-D3QL agent
should utilize its prior knowledge of the first context when
encountering it again. Perhaps less obviously, the first and
second quarters of the simulation also belong to the same
context, as they are permutations of each other. In other
words, the agent can use the knowledge acquired during the
first context to handle the second context. Fig. 7 verifies
that the CL-D3QL agent possesses the required backward
transfer capability for non-stationary environments, which will
be extremely advantageous in controlling their dynamic nature.
In addition, the figures reveal that D3QL has higher variations
than CL-D3QL in all metrics, which is highly undesirable in
wireless networks. Evidently, Random, the method with the
lowest complexity, is also inefficient. Nonetheless, the full
potential of our method would be harnessed in long-lasting
scenarios, which we will demonstrate in the next section.

B. Scenario 2: Stochastic Change Points

In this scenario, context shifts occur intermittently. When
a UE arrives on a channel, it remains active at a rate of 1/β
according to an exponential distribution. After its departure, a
new UE will replace it, whose profile will be selected from a
set of predefined profiles P . Three experiments are defined by
hyper-parameters C (i.e., the number of channels), β (i.e., the
mean duration of UE existence in the network), and |P | (i.e.,
the number of UE types), to investigate the effects of problem
size, non-stationarity, and heterogeneity on the performance of
our method.

• Variable Number of Channels: As Fig. 9-A demonstrates,
the CL-D3QL agent outperforms the D3QL agent in all
metrics (i.e., average normalized throughputs, collision
rates, and fairness during the lifetime of the agent).
Apparently, the higher fairness of random transmissions
is accompanied by higher collision rates of all UEs.
Moreover, with an increase in the number of channels,
and hence the problem dimensions, the CL-D3QL agent
perseveres and even slightly improves its performance.
Scrutinizing the results revealed that this is due to the
higher degree of freedom for transmissions in networks

TABLE VI
TIME COMPLEXITY ANALYSIS.

Algorithm Approximate Time (Seconds)
T = 30K T = 60K T = 90K

CL-D3QL 252 565 960
D3QL 240 541 943

Random 32 57 75

with more channels, considering that the CL-D3QL agent
has more time to learn and exploit each context.

• Variable Context Transition Rate: As Fig. 9-B illustrates,
the more frequent the context transitions (lower values
for β), the more continual learning improves the perfor-
mance. This is due to the increased likelihood of encoun-
tering repetitive contexts, which enables the CL-D3QL
algorithm to respond instantly to changes in the environ-
ment, making it suitable for the highly dynamic and non-
stationary environments of the Metaverse. Nonetheless,
both algorithms perform better in environments with less
dynamicity.

• Variable Number of UE types: According to Fig. 9-
C, By increasing the heterogeneity of the system via
increasing the number of different UE types, the CL-
D3QL algorithm eventually loses its advantage over the
D3QL algorithm. However, as analyzed in the previous
section, it is expected that in an open-ended environment,
continual learning would still outperform conventional
DRL techniques.

In addition, it is important to note that, even though Random
is the best-performing method in terms of fairness because it
divides the spectrum equally among all nodes, it exhibits high
collision rates and low normalized throughputs.

C. Time Complexity and Convergence Analysis

Finally, we provide a practical demonstration of our ap-
proach’s time complexity, summarized in Table VI, following
the efficiency analysis in section IV-D. Table VI presents
runtime data for a scenario with C = 3, β = 0.04 and |P | = 6
across varying durations. Notably, CL-D3QL shows execution
times comparable to D3QL. In addition, the reward plots in
Fig. 8 show that while the CL-D3QL algorithm converges with
three learning rates of varying magnitudes, it exhibits a slow
response at lower learning rates and unstable behavior during
context transitions at higher learning rates. Remarkably, Fig.
8 suggests that in practical applications, a dynamic learning
mechanism can be implemented where training and weight
updates cease once stability is achieved for each context.

VI. CONCLUSION

This paper investigated the variable packet length multi-
channel multiple access problem while considering a set
of heterogeneous and non-stationary scenarios in which the
number of active UEs and their transmission profiles might
shift over time. The primary objective was to maximize
the intelligent agent throughput while maintaining the per-
formance of incumbent UEs over which the agent has no



CL-D3QL
D3QL
Random

Time Slots

Time Slots

Co
lli

sio
n 

Ra
te

Ag
en

t’s
 N

or
m

al
ize

d 
Ac

tu
al

 T
hr

ou
gh

pu
t
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rate).

observation and agency due to backward compatibility and
privacy preservation. Initially, we formulated the problem and
investigated its complexity. Then, we introduced a D3QL-
based agent empowered by a symmetry-aware mechanism
based on DRL and CL as two Adaptive AI mechanisms that
could assist in the realization of self-sustaining networks. This
agent is responsible for making spectrum access decisions,
such as assigning a channel and changing the packet length
that must be transmitted. Afterwards, the efficiency of the CL
mechanism was examined and it proved that it restricts the size
of the state space and, as a result, behaves more effectively in
dynamic environments. The numerical results confirmed the
efficiency and fairness of the proposed agent.

As a potential future work, we intend to improve the
CL-enabled D3QL-based method for accessing the spectrum
for semantically-aware scenarios in which applying semantic
knowledge of the environment (including UEs, resources, etc.)
could help to construct parallel near-real-world experiences,
which could be a game-changer for bringing the Metaverse
into existence by filtering out redundant data and maximizing
the use of scarce communication resources. Furthermore, it

may be worthwhile to explore practical constraints such as
computational complexities and delays caused by the learning
mechanism —whether on the UE side or through offloading
to external servers— and their impact on the scalability of
the approach. Such considerations, along with optimizing con-
trol protocols (e.g., through semantic-aware protocol learning
[32]), facilitate the implementation of the current scheme in
a real testbed. At the same time, collaborating with industry
partners allows access to real-world data and infrastructure for
performance assessment under practical conditions. Finally,
our future work will focus on integrating the MAC scheme
with upper-layer problems, specifically predictive service pro-
vision in edge environments [49] through task offloading,
while accounting for task-level metrics such as task execution
success rate or response delay.

ACKNOWLEDGMENT

The research work presented in this article was conducted
in part at ICTFICIAL Oy. This work is partially supported by
the European Union’s HE research and innovation program
HORIZON-JUSNS-2023 under the 6G-Path project (Grant
No. 101139172), and the European Union’s Horizon 2020
Research and Innovation Program through the aerOS project
(Grant No. 101069732). The paper reflects only the authors’
views, and the European Commission bears no responsibility
for any utilization of the information contained herein.

REFERENCES

[1] F. Tang, X. Chen, M. Zhao, and N. Kato, “The Roadmap of Com-
munication and Networking in 6G for the Metaverse,” IEEE Wireless
Communications, pp. 72–81, 2022.

[2] T. Theodoropoulos, A. Makris, A. Boudi, T. Taleb, U. Herzog, L. Rosa,
L. Cordeiro, K. Tserpes, E. Spatafora, A. Romussi et al., “Cloud-
based XR Services: A Survey on Relevant Challenges and Enabling
Technologies,” Journal of Networking and Network Applications, vol. 2,
no. 1, pp. 1–22, Feb. 2022.



(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

(a
)

(b
)

(c
)

(a
)

(b
)

(c
)

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

CL-D3QL
D3QL
Random

Number of UE TypesNumber of UE TypesNumber of UE Types

A

B

C

Fig. 9. Average normalized throughput, collision rate, and fairness index for the CL-D3QL, D3QL, and Random agents in the stochastic scenario vs. A) the
number of channels, B) the context transition rate (1/β), and C) the number of UE Types. Each line is averaged over 5 executions, with the shaded areas
being areas within the standard deviation.

[3] T. Taleb, N. Sehad, Z. Nadir, and J. Song, “VR-based Immersive Service
Management in B5G Mobile Systems: A UAV Command and Control
Use Case,” IEEE Internet of Things Journal, vol. 10, no. 6, pp. 5349–
5363, Mar. 2022.

[4] T. Taleb, A. Boudi, L. Rosa, L. Cordeiro, T. Theodoropoulos, K. Tserpes,
P. Dazzi, A. I. Protopsaltis, and R. Li, “Toward Supporting XR Services:
Architecture and Enablers,” IEEE Internet of Things Journal, vol. 10,
no. 4, pp. 3567–3586, 2022.

[5] X. Zhou, C. Liu, and J. Zhao, “Resource Allocation of Federated
Learning for the Metaverse with Mobile Augmented Reality,” IEEE
Transactions on Wireless Communications, pp. 1–1, 2023.

[6] S. K. Jagatheesaperumal and M. Rahouti, “Building Digital Twins of
Cyber Physical Systems with Metaverse for Industry 5.0 and Beyond,”
IT Professional, vol. 24, no. 6, pp. 34–40, 2022.

[7] M. Ali, F. Naeem, G. Kaddoum, and E. Hossain, “Metaverse commu-
nications, networking, security, and applications: Research issues, state-
of-the-art, and future directions,” IEEE Communications Surveys and
Tutorials, pp. 1–1, 2023.

[8] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi,
“Toward 6G Networks: Use Cases and Technologies,” IEEE Commu-
nications Magazine, vol. 58, no. 3, pp. 55–61, 2020.

[9] M. Shokrnezhad and T. Taleb, “Near-optimal Cloud-Network Integrated
Resource Allocation for Latency-Sensitive B5G,” in 2022 IEEE Global
Communications Conference (GLOBECOM), Rio de Janeiro, Brazil,
Dec. 2022, pp. 4498–4503.

[10] M. Shokrnezhad, S. Khorsandi, and T. Taleb, “A Scalable Commu-
nication Model to Realize Integrated Access and Backhaul (IAB) in
5G,” in 2023 IEEE International Conference on Communications (ICC):
Wireless Communications Symposium, Rome, Italy, Jun. 2023.

[11] C. D. Alwis, A. Kalla, Q.-V. Pham, P. Kumar, K. Dev, W.-J. Hwang,

and M. Liyanage, “Survey on 6G Frontiers: Trends, Applications,
Requirements, Technologies and Future Research,” IEEE Open Journal
of the Communications Society, vol. 2, pp. 836–886, 2021.

[12] D. Abel, A. Barreto, B. Van Roy, D. Precup, H. P. van Hasselt, and
S. Singh, “A definition of continual reinforcement learning,” Advances
in Neural Information Processing Systems, vol. 36, 2024.

[13] D. Groombridge, “Gartner Top 10 Strategic Technology Trends for
2023,” Gartner, Tech. Rep. [Online]. Available: https://rb.gy/vrv8o

[14] H. Mazandarani, M. Shokrnezhad, T. Taleb, and R. Li, “Self-sustaining
Multiple Access with Continual Deep Reinforcement Learning for Dy-
namic Metaverse Applications,” in 2023 IEEE International Conference
on Metaverse Computing, Networking and Applications (MetaCom),
Kyoto, Japan, Jun. 2023.

[15] M. Xu, W. C. Ng, W. Y. B. Lim, J. Kang, Z. Xiong, D. Niyato,
Q. Yang, X. Shen, and C. Miao, “A Full Dive Into Realizing the Edge-
Enabled Metaverse: Visions, Enabling Technologies, and Challenges,”
IEEE Communications Surveys and Tutorials, vol. 25, no. 1, pp. 656–
700, First Quarter 2023.

[16] J. Yu, A. Alhilal, T. Zhou, P. Hui, and D. H. Tsang, “Attention-based
QoE-aware Digital Twin Empowered Edge Computing for Immersive
Virtual Reality,” IEEE Transactions on Wireless Communications, 2024.

[17] M. Shokrnezhad, T. Taleb, and P. Dazzi, “Double Deep Q-Learning-
based Path Selection and Service Placement for Latency-Sensitive Be-
yond 5G Applications,” IEEE Transactions on Mobile Computing, pp.
1–14, 2023.

[18] M. K. Bahare, A. Gavras, M. Gramaglia, J. Cosmas, X. Li, O. Bulakci,
A. Rahman, A. Kostopoulos, A. Mesodiakaki, and D. Tsolkas, “The
6G Architecture Landscape,” Tech. Rep., 2023. [Online]. Available:
https://rb.gy/vtcf0

[19] Z. Nadir, T. Taleb, H. Flinck, O. Bouachir, and M. Bagaa, “Immersive

https://rb.gy/vrv8o
https://rb.gy/vtcf0


Services Over 5G and Beyond Mobile Systems,” IEEE Network, vol. 35,
no. 6, pp. 299–306, Nov. 2021.

[20] T. Taleb, Z. Nadir, H. Flinck, and J. Song, “Extremely Interactive
and Low-latency Services in 5G and Beyond Mobile Systems,” IEEE
Communications Standards Magazine, vol. 5, no. 2, pp. 114–119, 2021.

[21] M. Adil, H. Abulkasim, A. Ali, H. Song, A. Farouk, and Z. Jin, “Role
of 5G and 6G Technologies in Metaverse, Quality of Service Challenges
and Future Research Directions,” IEEE Network, 2024.

[22] M. Shokrnezhad, H. Mazandarani, and T. Taleb, “Semantic Revolution
from Communications to Orchestration for 6G: Challenges, Enablers,
and Research Directions,” in IEEE Network, 2024.

[23] M. Shokrnezhad, H. Yu, T. Taleb, R. Li, K. Lee, J. Song, and
C. Westphal, “Towards a Dynamic Future with Adaptable Computing
and Network Convergence (ACNC),” IEEE Network, 2024.
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