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Abstract—With the growing intelligence and personalization
of consumer electronic products, extracting effective information
has become a key challenge in Consumer Electronics (CE).
Triadic Concept Analysis (TCA), an important extension of
Formal Concept Analysis (FCA), is widely applied but often
struggles to handle the hesitant fuzzy characteristics in real-
world data. To address this gap, we propose a Triadic Hes-
itant Fuzzy Concept (THFC) model. First, we introduce the
concept of a triadic hesitant fuzzy background, integrating the
fuzzy and hesitant nature of data in the CE environment.
We propose a knowledge acquisition method based on THFC,
which constructs a multi-granularity knowledge space with a
dynamic adjustment mechanism. This method captures subtle
distinctions between different types of information and their
hierarchical structures in the context of CE, offering significant
support for knowledge discovery and decision-making in complex
environments. Building on this, we design a variable-precision
hybrid similarity measurement (VP-HSM) method to extract
core, adjunct, and edge concepts, thus providing more precise
and structured knowledge for data analysis and decision-making
in CE. Experimental results on publicly available datasets show
that the proposed method significantly improves classification
accuracy and stability, effectively handling hesitant fuzzy data
and improving the accuracy of concept extraction.

Index Terms—Consumer electronics conceptual knowledge,
similarity measurement, hesitation fuzzy set, triadic concept
analysis, triadic hesitant fuzzy concept.

I. INTRODUCTION

IN Consumer Electronics (CE), intelligent decision-making
[1], [2], data analysis [3], intelligent computing [4], [5],
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and optimization programming [6], [7] have become central
drivers of technological innovation and application progress.
As device functions grow more complex, traditional methods
struggle to effectively manage the increasing volume of data
characterized by uncertainty, leading to the growing adoption
of Fuzzy Logic Systems (FLS) [8]. However, when FLS is
applied to address issues in CE, the results are often influenced
by complex computations and variations in multiple rules,
mainly due to compatibility and adaptability challenges across
different devices. Therefore, integrating methods such as FLS
to meet the complex demands of CE and achieve performance
optimization remains a critical area of current research.

Triadic Concept Analysis (TCA) [9], as a significant exten-
sion of Formal Concept Analysis [10], enhances the ability
to model complex data structures by introducing a third-
dimensional conditional context. TCA constructs a hierarchical
framework of concepts that includes objects, attributes, and
conditions, systematically uncovering the intrinsic relation-
ships between objects and attributes while enabling in-depth
analysis of triadic associations. To date, TCA has been applied
to various domains, including data mining [11], text analysis
[12], decision support [13], and rule extraction [14].

As research on TCA advances, numerous scholars have
actively explored and developed new paradigms. Regarding
computational frameworks, Ignatov et al. [15] defined “optimal
patterns” in triadic data, evaluating performance regarding
resource efficiency, noise tolerance, and other criteria. Wan et
al. [16] extended Multi-Granularity Formal Concept Analysis
to three-dimensional data, optimizing multi-level data struc-
tures. Peng et al. [17] introduced the Z-TCA algorithm with
Zero-Suppressed Decision Diagrams, achieving a threefold
efficiency improvement over traditional algorithms. In theory,
Bazin et al. [18] generalized Boolean concept lattices in the
triadic context, addressing the lack of extremality properties.
In applications, Ruas et al. [19] applied TCA to spatiotemporal
variation analysis in the product lifecycle, while Kaytoue et
al. [20] utilized TCA for biclustering in numerical data. Fei et
al. [21] introduced a TCA-based dynamic k-clique detection
method for analyzing evolving k-clique structures in dynamic
social networks.

In practice, effective modeling and knowledge discovery for
data with fuzziness and imprecision pose significant challenges
in both theoretical research and real-world applications. To
construct fuzzy granular concept clustering spaces and lower
and upper approximation spaces, Deng et al. [22] introduced
fuzzy attribute granular concepts, efficiently supporting label
prediction in incremental learning. Elhady et al. [23] combined
the fuzzy min-max algorithm with formal concept analysis to
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design a fuzzy iceberg lattice structure, significantly reducing
computational costs in association rule mining. Belohlavek et
al. [24] extended TCA’s traditional framework by introducing
fuzzy descriptions of relationships between objects, attributes,
and conditions, further developing related theories and applica-
tions. This research has significantly expanded the boundaries
of TCA theory and its practical applications.

However, data in CE exhibit considerable complexity and
uncertainty, e.g., interaction data from smart home devices can
show instability or volatility due to environmental variations,
while the behavioral responses of these devices, such as
fluctuations in the activity patterns of smart light bulbs, often
present uncertain, dynamically evolving, and non-deterministic
characteristics. Consequently, addressing the challenges posed
by fuzzy, dynamic variability and decision-making hesitancy
in such data has become a critical issue in CE.

Redundancy often occurs in generating triadic concepts,
making extracting core concepts crucial for triadic relationship
analysis. Its effectiveness impacts concept quality. Existing
studies address redundancy through concept reduction, min-
imizing unnecessary computations and information redun-
dancy. However, this approach has limitations in core concept
extraction, as it overlooks more profound semantic differences,
leading to the extraction of core concepts based on superficial
features with high computational costs. Analyzing intrinsic
relationships through similarity measurement and optimizing
concept selection can reduce complexity, improving efficiency
and accuracy. This provides a more efficient solution for
analyzing complex data in dynamic environments like smart
homes and the Internet of Things in CE.

Based on these considerations, this paper combines Hesitant
Fuzzy Sets (HFS) [25] with TCA to propose the Triadic
Hesitant Fuzzy Concept (THFC) model. This model effectively
captures the fuzziness and hesitation in object attribute values
under different conditions, constructing a multi-granularity
space based on the degree of affiliation and hesitancy. It mines
the concepts of CE at varying granularities, thereby meet-
ing the multi-scale knowledge acquisition needs in complex
data environments. Moreover, traditional concept similarity
measures often overlook the inherent hesitancy present in
the data itself. In this paper, we propose a novel variable-
precision hybrid similarity measurement (VP-HSM) method
that integrates an improved Dice [26] coefficient with a
Hausdorff [27] distance-based metric, grounded in Huffman’s
concept tree space. This approach combines the geometric
distribution properties with conceptual intersections, offering
a new methodology and tool for evaluating THFC similarity.
The main contributions of this paper are as follows:

1) We introduce a triadic hesitant fuzzy context to address
the fuzziness and hesitancy inherent in CE environments,
along with the corresponding concept extraction method.

2) By constructing a multi-granularity knowledge space
with a dynamic adjustment mechanism, we develop
a hierarchical representation of conceptual knowledge
tailored for CE.

3) We propose a VP-HSM for THFC and outline methods
for extracting core, adjunct, and edge concepts within
CE data environments.

The manuscript is structured as follows: Section II utilizes
pertinent theoretical frameworks and conceptual underpinnings
critical to the proposed methodology. Section III proposes
the THFC construction and knowledge acquisition method.
Section IV validates the proposed method through experimen-
tal results. Finally, Section V concludes the paper, discusses
limitations, and outlines future research directions.

II. BASIC NOTIONS

A. Hesitant Fuzzy Sets

Definition 1. [28] Let U be a given non-empty finite set.
∀X ⊆ U , A fuzzy sets G̃ is defined as a mapping from X to
the interval [0, 1]. Specifically, it can be expressed as:

G̃ = {(x, µG̃(x)) | x ∈ X,µG̃(x) ∈ [0, 1]}, (1)

where each element x ∈ X is assigned a membership degree
µG̃(x) ∈ [0, 1]. The membership function represents the
degree of membership of the element x in the fuzzy set G̃.

Definition 2. [29] Let U be a given non-empty finite set.
∀X ⊆ U , an HFS on X is a subset mapping function from X
to [0, 1], expressed as:

Ẽ = {(x, hHFS(x)) | x ∈ X}, (2)

where hHFS(x) represents the set of possible degrees to
which x ∈ X belongs to Ẽ. For convenience, we refer to
h = hHFS(x) as a hesitant fuzzy element.

Given any two HFSs Ã and B̃, their complement, union,
and intersection operations are defined as follows:

1) {Ãc = ⟨x, 1− µÃ(x)⟩ | x ∈ X}.
2) {Ã ∪ B̃ = ⟨x,max(µÃ(x), µB̃(x))⟩ | x ∈ X}.
3) {Ã ∩ B̃ = ⟨x,min(µÃ(x), µB̃(x))⟩ | x ∈ X}.

B. Triadic Fuzzy Concept

Definition 3. [9] Let the quadruple (U,A,C, I) be a triadic
formal context, where U,A, and C are non-empty finite sets,
and I ⊆ U×A×C represents the triadic relationship between
the sets U,A, and C. We define U,A, and C as the set
of objects, the set of attributes, and the set of conditions,
respectively, with the elements of these sets referred to as
objects, attributes, and conditions. For every ∀x ∈ U,∀a ∈ A
and ∀c ∈ C, if there exists a triadic relationship I between
object x, attribute a, and condition c, we write (x, a, c) ∈ I ,
meaning that object x has attribute a under condition c.

Definition 4. [9] Let (U,A,C, I) be a triadic formal context,
and let X ⊆ U , B ⊆ A, and D ⊆ C. The following rules
apply:

Case 1: In the projection formal context (A,C, IX), the
operators B(X,·,·) and D(X,·,·) are defined as:

B(X,·,·) = {c ∈ C | ∀a ∈ B, (a, c) ∈ IX},
D(X,·,·) = {a ∈ A | ∀c ∈ D, (a, c) ∈ IX}.

(3)

Case 2: In the projection formal context (U,C, IB), the
operators X(·,B,·) and D(·,B,·) are defined as:

X(·,B,·) = {c ∈ C | ∀x ∈ X, (x, c) ∈ IB},
D(·,B,·) = {x ∈ U | ∀c ∈ D, (x, c) ∈ IB}.

(4)
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Case 3: In the projection formal context (U,A, ID), the
operators X(·,·,D) and B(·,·,D) are defined as:

X(·,·,D) = {a ∈ A | ∀x ∈ X, (x, a) ∈ ID},
B(·,·,D) = {x ∈ U | ∀a ∈ B, (x, a) ∈ ID}.

(5)

Definition 5. [9] Let (U,A,C, I) be a triadic formal context.
For any X ⊆ U , B ⊆ A, and D ⊆ C, if the following
conditions are satisfied: B = D(X,·,·), D = B(X,·,·), X =
D(·,B,·), D = X(·,B,·), X = B(·,·,D), B = X(·,·,D), then
the triple (X,B,D) is called a triadic concept of the triadic
formal context (U,A,C, I). In this case, X,B, and D are the
extents, intents and moduses of the triadic concept (X,B,D),
respectively. To better address the uncertainty in real-world
data, Belohlávek [24] extended the concept of triadic fuzzy
formal contexts by introducing fuzzy set theory.

Definition 6. [24] Let (U,A,C, Ĩ = ϕ(U × A × C)) be a
triadic fuzzy formal context, where Ĩ represents the triadic
fuzzy relation between the object set U , the attribute set
A, and the condition set C. In this relation, each element
has a membership degree µ ∈ [0, 1], which indicates the
degree of membership of an object x to an attribute a under
a given condition c. Moreover, a threshold ∂ is considered.
In the projection formal contexts (A,C, ĨX), (U,C, ĨB) and
(U,A, ĨD), for any X ⊆ U,B ⊆ A,D ⊆ C, we have the
following:

B̃(X,·,·) = {c ∈ C | ∀a ∈ B,µ(a, c) ≥ ∂},
D̃(X,·,·) = {a ∈ A | ∀c ∈ D,µ(a, c) ≥ ∂},
X̃(·,B,·) = {c ∈ C | ∀x ∈ X,µ(x, c) ≥ ∂},
D̃(·,B,·) = {x ∈ U | ∀c ∈ D,µ(x, c) ≥ ∂},
X̃(·,·,D) = {a ∈ A | ∀x ∈ X,µ(x, a) ≥ ∂},
B̃(·,·,D) = {x ∈ U | ∀a ∈ B,µ(x, a) ≥ ∂}.

(6)

Definition 7. [24] Let (U,A,C, Ĩ = ϕ(U × A × C)) be
a triadic fuzzy formal context. If the following conditions
hold: B = D̃(X,·,·), D = B̃(X,·,·), X = D̃(·,B,·), D =
X̃(·,B,·), X = B̃(·,·,D), B = X̃(·,·,D), then the triple
(ϕ(X), B,D) is called a triadic fuzzy concept in the triadic
fuzzy formal context (U,A,C, Ĩ). Where, ϕ(X) is a fuzzy set
defined on X , where each object x ∈ X has a membership
degree:µ(x) = mina∈A µ(x, a, c).

III. TRIADIC HESITANT FUZZY CONCEPT AND
KNOWLEDGE ACQUISITION

The trading environment of CE is inherently complex.
To effectively extract conceptual knowledge in this context,
this section integrates the concepts of the Triangular Fuzzy
Number (TFN) [30] and Hesitant Entropy (HE) [31], in-
troducing the notion of the Triadic Hesitant Fuzzy Context
(THFC). Furthermore, by leveraging multi-granularity theory,
we propose a novel THFC-based multi-granularity knowledge
acquisition method. This method utilizes a VP-HSM to extract
core, adjunct, and edge THFCs. The overall framework is
illustrated in Fig. 1.

Fig. 1. THFC-based methodological framework for knowledge acquisition

A. Construction of Triadic Hesitant Fuzzy Concept
Definition 8. Let the quadruple (U,A,C, Ï) represent a

Triadic Hesitant Fuzzy Context, where Ï denotes the triadic
hesitant fuzzy relations between the object set U and the
attribute set A under the condition set C, Ï = (xM (hHFS(U ×
A × C))), (E⊥

Hpj
(hHFS(U × A × C))). Each element within

these relations is associated with a membership degree xM

and HE E⊥
Hpj

, subject to thresholds ρ and γ. Under the
projected Hesitant Fuzzy Contexts: (A,C, ÏX), (U,C, ÏB) and
(U,A, ÏD) for any subsets X ⊆ U , B ⊆ A, and D ⊆ C, we
have:

B̈(X,·,·) ={c ∈ C | ∀a ∈ B, xM (hHFS(a× c)) ≥ ρ∧
E⊥

Hpj
(hHFS(a× c)) ≤ γ},

D̈(X,·,·) ={a ∈ A | ∀c ∈ D,xM (hHFS(a× c)) ≥ ρ∧
E⊥

Hpj
(hHFS(a× c)) ≤ γ},

Ẍ(·,B,·) ={c ∈ C | ∀x ∈ X,xM (hHFS(x× c)) ≥ ρ∧
E⊥

Hpj
(hHFS(x× c)) ≤ γ},

D̈(·,B,·) ={x ∈ U | ∀c ∈ D,xM (hHFS(x× c)) ≥ ρ∧
E⊥

Hpj
(hHFS(x× c)) ≤ γ},

Ẍ(·,·,D) ={a ∈ A | ∀x ∈ X,xM (hHFS(x× a)) ≥ ρ∧
E⊥

Hpj
≤ γ},

B̈(·,·,D) ={x ∈ U | ∀a ∈ B, xM (hHFS(x× a)) ≥ ρ∧
E⊥

Hpj
(hHFS(x× a)) ≤ γ},

(7)

where 0 ≤ xM ≤ 1 and 0 ≤ E⊥
Hpj
≤ 1.

Definition 9. Let the quadruple (U,A,C, Ï) represent a Tri-
adic Hesitant Fuzzy Context. If the following equalities hold:
B = D̈(X,·,·), D = B̈(X,·,·), X = D̈(·,B,·), D = Ẍ(·,B,·), X =
B̈(·,·,D), B = Ẍ(·,·,D), then the triple (ψ(X), B,D) is called
a THFC over the Triadic Hesitant Fuzzy Context (U,A,C, Ï).
For simplicity, all triadic hesitant fuzzy concepts over U are
denoted as T .

If ψ(X) is a hesitant fuzzy relational set on X , then: ψ(X)
= {(x1,H(x1), E(x1))), . . . , (xn,H(xn), E(xn))) | xi ∈
X}, where H = mina∈A,c∈D x

M (hHFS(x × a × c)), E =
maxa∈A,c∈D E

⊥
Hpj

(hHFS(x× a× c)).
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In practical applications, the parameters ρ and γ in Equa-
tion (7) can be viewed as granular judgment conditions. The
pseudocode for generating Triadic THFCs is presented in
Algorithm 1.

Algorithm 1 THFC Extraction Algorithm
Input: Hesitation entropy matrix HFE, Membership de-
gree matrix MOD, threshold value γ, ρ
Output: THFCs C
Initialize: C ← ∅
for each cell [i, j] in MOD do

Replace MOD[i, j] with xm.
end for
for each cell [i, j] in HFE do

Parse p = [p1, p2, p3] and compute E⊥
Hpj

Replace HFE[i, j] with E⊥
Hpj

.
end for
for D ⊆ C, B ⊆ A, X ⊆ U do

Compute:
B̈(X,·,·), D̈(X,·,·), Ẍ(·,B,·), D̈(·,B,·), Ẍ(·,·,D), B̈(·,·,D).
if X = D̈(·,B,·), D = Ẍ(·,B,·), X = B̈(·,·,D), B =
Ẍ(·,·,D) then

Add (X,B,D) to C
end if

end for
Return: C

These parameters can be adjusted to suit specific down-
stream tasks, allowing for the selection of an appropriate level
of granularity.

• Coarse Granularity: Suitable for early-stage exploration
and global trend analysis, this level extracts a larger
number of weakly associated THFCs.

• Fine Granularity: Ideal for precise decision-making and
knowledge validation, it identifies key THFCs with higher
semantic accuracy.

• Medium Granularity: Useful for comprehensive global
analysis, this level strikes a balance between the quantity
and quality of THFCs.

In the evaluation of CE, particularly for complex products
such as mobile phones, the criteria and attributes involved
often exhibit significant uncertainty. To address this, the fol-
lowing example demonstrates the process of extracting THFCs
from a Triadic Hesitant Fuzzy Context. Table I presents
a Triadic Hesitant Fuzzy Context, where x1, x2, and x3
represent three types of consumer electronic products: high-
end, mid-range, and entry-level, respectively. S1, S2, and S3

denote the performance attributes of mobile phones, while C1

and C2 represent two evaluation criteria. With the thresholds
set to ρ = 0.6, γ = 0.35. Algorithm 1 generates 8 THFCs, as
presented in Table II.

B. Variable-Precision Hybrid Similarity Measurement

To improve the accuracy and comprehensiveness of THFC
similarity evaluation, this section introduces a Huffman Con-
cept Tree to represent the hierarchical relationships among
THFCs and incorporates a Hesitant Fuzzy Weighted Dice

Coefficient to measure the hesitant fuzzy information within
them.

Definition 10. For ∀L and l ∈ T , the Hausdorff distance
in the metric space of the Huffman Concept Tree is expressed
as:

dH(L, l)Huffman = max

{
sup
ȧ∈L

inf
ḃ∈l

dHuffman(ȧ, ḃ),

sup
ḃ∈l

inf
ȧ∈L

dHuffman(ȧ, ḃ)

}
.

(8)

By encoding the concept granule frequencies in L and l
as Huffman codes, a Huffman Concept Tree is constructed.
The path lengths within the tree are then used to measure
the semantic distance between concepts, replacing the tradi-
tional Euclidean distance in similarity measures. This approach
prioritizes high-frequency concept granules for encoding, en-
hancing the semantic differentiation between critical concepts
and improving the efficiency of the measurement process.

Definition 11. For ∀L and l ∈ T , the Hesitant Fuzzy
Weighted Dice Coefficient is defined as:

Diceweight(L, l) = ω

∑
ẋ∈L∩l

(
xML (ẋ) + xMl (ẋ)

)∑
ȧ∈L x

M
L (ȧ) +

∑
ḃ∈l x

M
l (ḃ)

+

(1− ω)
∑

ẋ∈L∩l

(
EL(ẋ) + El(ẋ)

)∑
ȧ∈LEL(ȧ) +

∑
ḃ∈lEl(ḃ)

,

(9)

where ω ∈ [0, 1] is the hesitant fuzzy weighting coefficient,
xML (ȧ) and xMl (ḃ) represent the membership degrees of con-
cept granules ȧ ∈ L and ḃ ∈ l, respectively. Similarly, EL(ȧ)
and El(ḃ) denote the hesitation entropy of concept granules
ȧ ∈ L and ḃ ∈ l, respectively. xML (ẋ), xMl (ẋ), EL(ẋ),
and El(ẋ) correspond to the minimum membership degrees
and maximum hesitation entropy for the intersecting concept
granules between the two THFCs.

Equation (9) comprehensively captures the importance dif-
ferences and uncertainties among concept granules within
the concept sets, offering a more accurate representation
and handling of fuzzy and hesitant information in the data.
Accordingly, the VP-HSM for THFCs is expressed as:

DHTDH(L, l) =
e−dH(L,l)Huffman/100 · Diceweight(L, l)

1 + θ
(
dH(L, l)Huffman

)2 , (10)

where θ ∈ [0, 1] is the weighting parameter for difference. The
results of Equation (10) are influenced by the hesitant fuzzy
weighting coefficient ω and the weighting parameter θ. As
shown in Fig. 2, adjusting these parameters reveals significant
nonlinear characteristics.

Theorem 1. For ∀L, l and ξ ∈ T , their DHTDH satisfies the
following properties:

1) 0 ≤ DHTDH(L, l) ≤ 1,
2) DHTDH(L, l) = 1 if L = l,
3) DHTDH(L, l) = DHTDH(l, L),
4) DHTDH(L, ξ) ≤ DHTDH(L, l) and DHTDH(L, ξ) ≤

DHTDH(l, ξ) if L ⊆ l ⊆ ξ.

Proof: According to its nature, it is easily provable.
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TABLE I
TRIADIC HESITANT FUZZY CONTEXT

C1 C2

S1 S2 S3 S1 S2 S3

x1 (0.3, 0.6, 0.8) (0.4, 0.5, 0.8) (0.1, 0.6, 0.9) (0.4, 0.6, 0.6) (0.2, 0.8, 0.9) (0.4, 0.6, 0.8)
x2 (0.7, 0.8, 0.9) (0.2, 0.5, 0.9) (0.1, 0.6, 0.8) (0.1, 0.4, 0.6) (0.1, 0.1, 0.2) (0.8, 0.9, 0.9)
x3 (0.5, 0.6, 0.6) (0.1, 0.7, 1.0) (0.4, 0.6, 0.7) (0.6, 0.6, 0.7) (0.1, 0.4, 0.8) (0.1, 0.3, 0.3)

TABLE II
THFCS FROM THE ABOVE TABLE

THFCs Extents Intents Moduses Triadic Diagram

T1 {(x2, 0.8, 0.25), (x3, 0.6, 0.11)} S1 c1
T2 {(x1, 0.6, 0.22), (x3, 0.6, 0.14)} S1 c2
T3 U ∅ C
T4 {(x3, 0.6, 0.14)} S1 c1, c2
T5 {(x2, 0.9, 0.11)} S3 c2
T6 U A ∅
T7 {(x3, 0.6, 0.35)} {S1, S3} c1
T8 ∅ A C

Fig. 2. VP-HSM trend analysis

Definition 12. Let L = {L1, L2, . . . , L|L|} represent a set
of THFCs, and let l ∈ T be a specific THFC. The mean value
of the VP-HSM between L and l is defined as:

Dmean(L, l) =
1

|L|

|L|∑
i=1

DHTDH(Li, l), (11)

where DHTDH(Li, l) denotes the VP-HSM between the i-
th THFC Li and l. This mean value provides an aggregate
similarity score, capturing the overall relationship between the
set L and the element l.

Based on the mean similarity scores Dmean, the THFCs in
L can be categorized into three distinct groups: core, adjunct,
and edge THFCs, defined as follows:

Core(L) =
{
Li | Li ∈ L, i ≤ ⌈α|L|⌉

}
, (12)

Edge(L) =
{
Li | Li ∈ L, i > ⌈β|L|⌉

}
, (13)

Adjunct(L) =
{
Li | Li ∈ L, ⌈α|L|⌉ < i ≤ ⌈β|L|⌉

}
, (14)

where, Li denotes the i-th THFC in L, sorted in descending
order of their DHTDH scores. α is the proportion threshold for
identifying core THFCs, and β is the proportion threshold for
defining marginal THFCs. Furthermore, core THFCs represent

the most relevant concepts, adjunct THFCs are moderately
relevant, and edge THFCs have the least relevance, based on
their DHTDH scores.

The calculation process for the VP-HSM is outlined in
Algorithm 2, which is summarized as follows:

Algorithm 2 THFC Similarity Calculation
Input: THFCs C, Parameters θ, ω
Output: Similarity Matrix M , core, edge, adjunct THFC
K,N , p
Initialize: M ← ∅
for each pair of THFCs do
Compute : D1 = Diceweight = ω ·Dice1+(1−ω) ·Dice2

Compute : D2 = Hausdorffdistance
if D2 = 0 or D1 = 1 then
M [i, j]← 1

else
M [i, j]← D1 · exp(−D2/100)/(1 + θ ·D2

2)
end if

end for
Similarity ordering then select
Return: M,K,N, p

IV. EXPERIMENTAL ANALYSIS

A. Experimental Setup
To evaluate the efficacy and robustness of the proposed ap-

proach, we conducted THFC extraction across seven publicly
available datasets, identifying core, adjunct, and edge THFCs.
Descriptions of the datasets used in this study are summarized
in Table III. Except for the Diabetes dataset, which was
obtained from Kaggle, all other datasets were sourced from
the UCI Machine Learning Repository. The experimental envi-
ronment is as follows: hardware configuration—Intel i7-9700
processor with 8.00 GB of RAM; software environment—64-
bit Windows 10 operating system and PyCharm 5.0.3 IDE.
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TABLE III
DESCRIPTION OF DATASETS

No. Data Attributes Samples Classes

1 Breast Cancer 9 699 2
2 Diabetes 8 768 2
3 Wine 13 178 3
4 Segmentation 19 2100 7
5 WPBC 33 198 2
6 Ionosphere 34 351 2
7 WDBC 30 569 2

B. Preprocessing and THFC Extraction

To improve the efficiency of THFC extraction, several data
preprocessing steps were implemented. First, MinMaxScaler
was applied to normalize the data, removing discrepancies in
feature scales and ensuring consistency across all dimensions.
Next, the K-means [32] was used to cluster the samples, with
the silhouette coefficient [33] helping to determine the optimal
K value for the best clustering performance. Additionally, the
Monte Carlo simulation method [34] was employed to expand
the dataset by simulating hesitant scenarios. Finally, each data
element was represented as a TFN, offering a more flexible
and comprehensive depiction of both fuzziness and hesitation.
The THFC extraction was then carried out using Algorithm 1,
and the detailed process is illustrated in Fig. 3.

Fig. 3. Process diagram for extracting THFCs

Fig. 4 illustrates the number of THFCs across different
granularity spaces. According to the figure, as ρ increases, the
interaction criteria among target objects, attributes, and condi-
tions become more stringent, reducing the number of extracted
THFCs. Correspondingly, under these stricter conditions, the
extracted THFCs exhibit higher semantic precision and repre-
sentativeness. Similarly, increasing γ allows for greater hesi-
tation, thereby expanding the number of extractable THFCs.
However, due to the elevated entropy, the semantic clarity of
these THFCs decreases. Conversely, reducing γ diminishes the
number of THFCs while enhancing their semantic consistency
and stability. According to Definition 9, Table IV validates
the impact of different granularity spaces on the extraction of

TABLE IV
DIFFERENT GRANULARITY SPACES ON THE EXTRACTION OF CORE AND

EDGE THFCS WITHIN THE DIABETES DATASET.

ρ γ Core THFC Edge THFC

0.5 0.45

{(x1, x2), (s4), (c1, c2)},
{(x1), (s1, s4), (c1, c2)},

{(x1, x2), (s1, s3, s4), (c1)},
{(x1, x2, x7), (s3, s4), (c1)},

{(x1), (s1, s2, s3), (c1)}

{(x4), (s2, s4), (c1)},
{(x3, x4, x5, x6), (s2), (c1)},

{(x5), (s1, s3), (c2)},
{(x1, x4, x5), (s1), (c2)},
{(x1), (s1, s2, s3), (c1)}

0.55 0.40

{(x1, x2), (s1, s4), (c1)},
{(x2), (s4), (c1, c2)},

{(x3, x4, x6), (s2), (c1, c2)},
{(x3), (s2), (c1, c2)}

{(x5), (s1, s3), (c2)},
{(x1, x4, x5), (s2), (c1)},
{(x6, x7), (s3), (c1)},

{(x4, x6, x7), (s2), (c2)}

0.60 0.35
{(x1, x5), (s3), (c1)},
{(x1), (s1, s3), (c1)},
{(x5), (s3, s4), (c1)}

{(x6, x7), (s2), (c2)},
{(x7), (s2), (c1)},

{(x5), (s3, s4), (c1)}

0.65 0.30 {(x4, x7), (s2), (c2)},
{(x4), (s2), (c1, c2)}

{(x7), (s3), (c1)},
{(x5), (s1), (c2)}

0.70 0.25 {(x5), (s3), (c1, c2)} ∅

0.75 0.20 {(x6), (s3), (c2)} ∅

TABLE V
COMPARISON OF AVERAGE PERFORMANCE WITH STATE-OF-THE-ART

METHODS ON WINE DATASETS

Method Classifier Accuracy (%) Number of Features

Hu et al. [37] SVM 95.33 9
Hu et al. [41] KNN 97.22 5
Sang et al. [42] Random Tree 93.26 9
Wang et al. [43] KNN 97.22 9
Huang et al. [44] KNN 97.08 8
Zhan et al. [45] CART 92.09 7
Wei et al. [46] KNN 97.78 6
Zhao et al. [47] KNN 96.05 9
Du et al. [48] Bayes Net 94.4 11
Huang et al. [49] KNN 97.14 9
Huang et al. [50] KNN 97.06 8
Ours KNN 98.32 6

core and edge THFCs within the Diabetes dataset. Overall, the
adjustment of granularity effectively balances the number and
semantic accuracy of core and edge THFCs, offering a more
refined optimization direction.

C. Feature Selection and Performance Evaluation

The VP-HSM method proposed in this study aims to
precisely evaluate the degree of similarity among THFCs,
thereby facilitating the identification of core, adjunct, and edge
THFCs within the THFC space. These identified concepts
are then used as structured knowledge for feature selection.
Specifically, attributes within core THFCs and adjunct THFCs
are categorized as core and adjunct attributes, respectively,
while attributes within edge THFCs, as well as those not
belonging to any THFC, are considered edge attributes. To as-
sess the adjunct attributes, we employ the XGBClassifier [35],
treating them as supplementary information. The results of
feature selection across seven datasets, based on Algorithm
2, along with the overall importance ranking of attributes,
are presented in Table VI. Based on the ranking results in
Table VI, attributes are sequentially added to the base classi-
fiers KNN and SVM, and the corresponding evaluation metrics
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Fig. 4. The number of THFCs across different granularity spaces

TABLE VI
SORTING ATTRIBUTES BASED ON THE PROPOSED METHOD.

No. Core Attributes Edge Attributes Overall Order of Attributes

1 3, 6, 4 8 ,5, 9 3, 6, 4, 2, 7, 1, 8, 5, 9
2 2, 6, 8 5, 1, 4 2, 6, 8, 7, 3, 4, 5, 1
3 1, 7, 10 9, 11, 12 1, 10, 7, 13, 4, 5, 6, 2, 3, 8, 9, 11, 12
4 10, 15, 11, 19 3, 4, 5, 9 10, 15, 19, 11, 14, 18, 12, 2, 16, 13, 17, 1, 8, 7, 6, 9, 4, 5, 3
5 1, 3, 22, 31 4, 17, 5, 24 3, 22, 1, 31, 33, 19, 2, 13, 29, 32, 28, 7, 12, 26, 18, 8, 23, 6, 11, 27,

20, 15, 10, 30, 14, 9, 25, 21, 16, 24, 4, 17, 5
6 5, 27, 7, 3, 1 10, 11, 12, 13, 14 5, 27, 7, 3, 1, 32, 9, 16, 8, 17, 6, 29, 4, 24, 20, 34, 22, 21, 28, 18,

30, 31, 26, 33, 25, 23, 19, 15, 2, 10, 11, 12, 13, 14
7 23, 21, 2, 7 20, 19, 18, 16, 15, 12, 10, 9 21, 23, 2, 7, 8, 28, 24, 4, 22, 27, 11, 17, 13, 25, 14, 26, 6, 30, 1, 5,

29, 3, 20, 19, 18, 16, 15, 12, 10, 9

are calculated: Accuracy = TP+TN
TP+TN+FP+FN , Precision = TP

TP+FP ,
Recall = TP

TP+FN , as illustrated in Fig. 5. With the sequential
addition of attributes, the overall classification performance
improves progressively and tends to converge. This demon-
strates that the proposed method effectively mitigates the
adverse effects of redundant and noisy attributes, thereby
enhancing classification performance.

To validate the effectiveness of the proposed method, com-
parative experiments were conducted against several state-of-
the-art approaches, as summarized in Table VII. The base clas-
sifier KNN(with K=3) was employed under a 10-fold cross-
validation framework, The comparative results are presented
in Table VIII, where the proposed method achieved average
accuracies of 98.09%, 79.22%, 86.67%, 98.11%, 98.32%,
97.07%, and 98.26% across the Breast Cancer, Diabetes,
WPBC, Ionosphere, Wine, WDBC, and Segmentation datasets,
respectively. These results consistently outperformed the com-
peting methods and demonstrated lower standard deviations,
indicating the stability of the proposed method across various
datasets. Overall, the proposed method achieved an average
accuracy of 93.68% across all datasets, showcasing its strong
classification capability.

Given the varying objectives of different research method-
ologies, the datasets selected are often closely related to
their specific research content and characteristics, leading to
certain differences. Among the diverse datasets, the Wine

dataset is particularly notable for its clear structure, moderate
number of features, and strong representativeness. Therefore,
we conducted a comparative analysis of the classification
performance on the Wine dataset, focusing on metrics such
as classification accuracy and the number of selected features.
The experimental results are presented in Table V.

D. Parameter Sensitivity Analysis

The parameters ω and θ respectively influence the calcu-
lation of Diceweight(A,B) and dH(A,B)Huffman. Specifically,
ω ∈ [0, 1] serves as a weighting coefficient to balance the
contributions of membership degree and hesitation entropy in
Diceweight(A,B). By adjusting ω, the relative influence of these
two factors can be dynamically fine-tuned to meet different
similarity assessment requirements. Similarly, θ modulates
the nonlinear scaling effect of dH(A,B)Huffman, where higher
values of θ gradually reduce the impact of dH(A,B)Huffman
on the similarity measurement. To analyze the role and effects
of these parameters under various configurations, experiments
were conducted with different ranges of ω and θ. The results
are illustrated in Fig. 6.

Fig. 6 shows 25 variation trends under different parameters
for each dataset, and the variation is gradually obvious as the
parameter difference becomes larger. Concretely, as the value
of θ gradually increases, DHTDH exhibits a slow downward
trend overall. In contrast, parameter ω plays a more significant
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(a) Classification results with the number of features selected for KNN

(b) Classification results with the number of features selected for SVM

Fig. 5. Results of adding classifiers step-by-step after dataset attributes are sorted.

role in DHTDH. With the increase of ω, the variation in
DHTDH becomes more pronounced. This trend indicates that
ω enables the variable-precision hybrid similarity to either
emphasize or disregard certain specific features of THFCs,
thereby enhancing the role of THFC structural information in
DHTDH.

V. CONCLUSION

To achieve efficient knowledge acquisition and representa-
tion in complex fuzzy environments, this study integrates HFS
with TCA to construct a multi-granularity knowledge space
with a dynamic adjustment mechanism. A multi-granularity
knowledge acquisition approach based on THFC is introduced,
facilitating the hierarchical acquisition and representation of
conceptual knowledge within the context of CE. On this basis,
a VP-HSM method is further developed to capture deeper
differences between THFCs, thereby improving the quality

of the acquired THFCs. However, practical data interactions
in CE environments are often dynamic and involve complex
cross-domain knowledge integration, a challenge not fully
addressed by the current model. The evolving landscape of
CE necessitates an adaptive framework capable of managing
the complexity and timeliness of multi-domain knowledge
representation in rapidly changing scenarios. Future research
will focus on enhancing the adaptability and scalability of the
model to effectively manage dynamic environments, enabling
real-time knowledge updating, and supporting efficient pro-
cessing of large-scale, multi-modal data. This will empower
dynamic cross-domain knowledge transfer and application,
ultimately driving advancements in various real-world domains
such as smart cities, healthcare, and autonomous systems.
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TABLE VII
BASELINE MODELS AND TECHNIQUES

Model Abbrev Used Technique Feature Selection Level

Forward Attribute Reduction based on
Variable Precision δ-Neighbourhood

FARVPDN [36] Neighbourhood and Variable Precision
Rough Sets

Global

Forward Attribute Reduction based on
Variable Precision K-Nearest Neigh-
bourhood

FARVPKNN [36] Neighbourhood and Variable Precision
Rough Sets

Global

Neighbourhood Entropy Based algo-
rithm

NEIEN [37] Neighbourhood Rough Sets Global

Heuristic Algorithm Based on Neigh-
bourhood Discrimination Index

HANDI [38] Neighbourhood Rough Sets Global

Neighbourhood-based Class-Specific
Features Selection

NeCFeS [39] Neighbourhood Rough Sets Class-Specific

Granule-Specific Feature Selection
Methodology

GFS [40] Neighbourhood Rough Sets and Improved
K-Nearest Neighbours Approach

Local

TABLE VIII
OVERALL CLASSIFICATION ACCURACY COMPARISON WITH KNN

No. Ours GFS NeCFeS FARVPDN FARVPKNN NEIEN HANDI Full Feature Set

1 98.09±2.42 97.97±1.83 95.53±2.43 - - - - 96.14±2.42
2 79.22±5.67 78.73±5.87 74.63±4.47 72.53±4.93 72.27±5.12 - - 74.22±3.09
3 98.32±2.61 98.30±2.74 98.30±2.74 97.19±5.42 96.67±7.03 94.90±6.19 96.63±5.38 94.86±6.33
4 98.26±0.41 97.96±0.70 95.40±1.27 - - 92.64±1.38 93.98±0.63 95.11±1.02
5 86.67±3.97 82.45±3.19 77.26±3.98 - - 75.73±2.09 72.71±4.29 76.31±3.42
6 98.11±4.11 94.09±4.26 91.63±4.48 88.65±4.67 89.22±4.67 - - 83.83±6.46
7 97.07±2.86 96.63±2.85 95.78±2.06 96.31±2.11 95.95±2.06 96.83±2.97 95.08±2.32 97.01±2.05
Avg 93.68 92.30 89.79 88.67 88.53 90.03 89.47 88.21

Fig. 6. Sensitivity analysis of parameters ω and θ
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