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A B S T R A C T
Supporting the coexistence between enhanced Mobile Broadband (eMBB) and Ultra-Reliable Low
Latency Communications (URLLC) is a major challenge in modern communication systems due to
their diverse requirements. Multi-access Edge Computing (MEC), Network Function Virtualization
(NFV), and Network Slicing (NS) emerge as complementary paradigms to address this challenge,
providing fine-grained, on-demand resources closer to the User Equipment (UE) and enabling shared
utilization of physical infrastructure. This paper addresses the combination of MEC, NFV, NS, and
dynamic virtual resource allocation for overcoming the problem of resource dimensioning at the
network edge supporting eMBB and URLLC services. We have proposed a Continuous-Time Markov
Chain (CTMC) model to evaluate how requests are managed by the virtualization resources of a
single MEC node, primarily focusing on fulfilling the requirements of both eMBB and URLLC
services. It characterizes the dynamic virtual resource allocation process and incorporates three key
performance metrics, relevant for both URLLC and eMBB services (e.g., availability and response
time) as well as for service providers (e.g., power consumption). The model also integrates practical
factors such as failures during service processing, service prioritization, and setup (repair) times,
enabling insights into how the MEC-NFV-based 5G network handles different service categories by
applying service prioritization and dynamic resource allocation. Our key findings reveal that container
setup and failure rates play a crucial role in both availability and response times, higher setup rates
improve availability and shorten response times. Additionally, the number of containers significantly
enhances both metrics, whereas buffer sizes primarily influence response times. Furthermore, higher
eMBB arrival rates reduce availability and increase response times, while URLLC availability remains
unaffected.

1. Introduction
The Fifth Generation of mobile networks (5G) intro-

duced a robust cloud-native core network with network
slicing capabilities, empowering the creation of innova-
tive services such as enhanced Mobile Broadband (eMBB),
Ultra Reliable Low Latency Communications (URLLC),
and massive Machine Type Communications (mMTC) [1].
While eMBB supports applications requiring higher band-
width, such as immersive communications and smart offices,
URLLC addresses services with strict reliability and latency
requirements (e.g., autonomous vehicles and telesurgery).
Meanwhile, mMTC is tailored to support a vast number of
Internet of Things (IoT) devices, transmitting small amounts
of data sporadically.

The synergy between Multi-access Edge Computing
(MEC) and Network Function Virtualization (NFV), often
referred to as MEC-NFV, plays a crucial role in advanc-
ing URLLC. This combination empowers the hosting of
virtualized network functions and applications in closer
proximity to end-users, resulting in a significant reduction
in latency and an enhancement of overall reliability. In
addition, MEC-NFV’s advantages extend beyond URLLC,
benefiting eMBB services as well. NFV facilitates dynamic
resource allocation and scaling, aligning network capacity
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with demand fluctuations and effectively minimizing latency
during peak usage periods. Furthermore, content and appli-
cations can be cached and processed at the network edge,
further ensuring rapid response times.

The eMBB service represents a natural evolution of the
mobile broadband provided by LTE networks, being the
most widely used service in mobile networks, and also the
first category targeted for support by 5G networks in Release
15. On the other hand, URLLC is perhaps the most chal-
lenging service to be supported due to its stringent latency
and reliability requirements [2], which may be compromised
by factors such as failures, virtualization overhead, and
coexistence with other services.

Although the mMTC is an important service category in
5G networks, it predominantly addresses connection density
for low-power devices with infrequent transmission events,
where high data rates or low latency are not critical. Thus,
this paper focuses on eMBB and URLLC services, where
the concept of Network Slicing (NS) is crucial to enable
their coexistence [3]. NS plays a fundamental role in en-
abling the shared utilization of physical infrastructure within
dynamic on-demand networking platforms, allowing for the
creation of multiple virtual networks. This concept leverages
the virtualization of both edge and core network functions,
making effective use of well-established virtualization tech-
nologies. The coexistence of eMBB and URLLC is expected
to encompass a wide range of use cases, however, it also
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poses great challenges such as how to find a balance between
their divergent requirements during the dynamic resource
allocation in MEC-NFV domain [4].

Multiple works have addressed the coexistence between
different service categories within 5G networks. However,
they predominantly focus on radio resource allocation within
the Radio Access Network (RAN) ([4], [5], [6], [7]). Thus,
there exists a notable gap when it comes to considering
factors that influence resource provisioning in the MEC-
NFV domain. Notably, prior research often presupposes
fault-free cloud environments ([4] and [8]) or with instan-
taneous provisioning times ([5], [6], [9], [10]) which may
not align with the remaining components of 5G networks.
Furthermore, studies often do not consider that there are
service subcategories that differ widely ([8], [11], [12], [13])
and neglect the overhead caused by the virtualization and
dynamic resource allocation. For instance, the Virtualized
Network Function (VNF) instance boot process plays a key
role in cost-performance analysis for both edge and core
5G networks. During installation, energy is consumed, and
resources are allocated, yet services remain unattended. This
entails repercussions not only in terms of energy efficiency
but also in the context of potential Service Level Agreement
(SLA) violations.

This paper addresses the combination of MEC, NFV, and
the dynamic virtual resource allocation within the context
of coexisting 5G service categories: URLLC and eMBB,
aiming at the challenge of resource dimensioning in compact
MEC-NFV nodes. We propose a Continuous-Time Markov
Chain (CTMC) based model to characterize the dynamic
virtual resource allocation, incorporating three performance
metrics, which will be relevant not only for URLLC and
eMBB services (e.g., availability and response time) but
also for service providers (e.g., power consumption). In
addition, to make the model more practical, we have inte-
grated factors like resource failures, service prioritization,
and setup (repair) times into the formulation, as they can
incur significant impacts on the 5G applications’ require-
ments. Moreover, the MEC-NFV node model incorporates
dynamic scaling capabilities and service prioritization to
accommodate the two 5G service categories. Some of our
key findings include the observation that higher eMBB ar-
rival rates decrease availability and increase response times,
while URLLC availability remains stable. Moreover, the
container setup rates and failure rates substantially affect
both availability and response times, with higher setup rates
enhancing availability and reducing response times. Also,
the number of containers emerges as a significant factor,
enhancing both availability and response times, while buffer
sizes primarily affect response times.

The remainder of this paper is organized as follows.
Section 2 discusses relevant works in the field of MEC-
NFV resource allocation. Section 3 describes the proposed
CTMC-based model for a single node MEC-NFV, assum-
ing a virtual environment featured with containers that are
able to process both URLLC and eMBB requests. Section
4 presents the model validation and results obtained by

extensive discrete-event simulations. Finally, Section 5 pro-
vides our concluding remarks and highlights future work
directions.

2. Related Work
This section provides a comprehensive overview of the

models proposed in the literature to address MEC-NFV
in 5G networks. The focus is particularly placed on the
distinct characteristics addressed by each model, including
the specific problem(s) they tackle, the types of services in-
volved, and the mathematical tools employed. Additionally,
it aims to elucidate the contribution of the present work in
comparison to that of the existing literature.
2.1. Addressed Problems and Network Segment

A body of existing literature on radio and computa-
tional resource issues related to the MEC-NFV architec-
ture encompasses various classes of problems, including
resource scheduling, Dynamic Resource Allocation (DRA),
and resource dimensioning [14]. In this section, we provide
a summary of the main studies in these fields, focusing
on the addressed problems, the network segments involved
(RAN or Core functions), and the 5G service categories.
Additionally, since all of the following works are analytical
in nature, we also extract the mathematical tools utilized to
build their models.

The first five works in Table 1 address the radio re-
source sharing between 5G service categories. In [4], the
authors tackle the challenge of sharing radio resources be-
tween eMBB and URLLC, involving a trade-off between
latency, reliability, and spectral efficiency, using Combi-
natorial Programming. Similarly, [5] proposes a dynamic
joint scheduling approach for URLLC and eMBB traffic
at the sub-frame level, utilizing a queuing mechanism to
monitor and control URLLC packet latency in real-time.
In [6], the proposal involves an overlapping scheme of
puncturing a portion of resources scheduled to an eMBB
packet for URLLC packets, impacting eMBB packets. This
work extends the method provided by ITU-R to reflect the
puncturing of URLLC on eMBB and considers additional
delays due to retransmissions, utilizing Queueing Theory.
[15] proposes a dynamic resource provisioning scheme that
leverages multiple base stations and a shape-based heuristic
to optimize resource utilization and enhance QoS across
diverse traffic types. Similarly, [16] explores dynamic net-
work slicing for virtualized RANs, managing mixed traffic
with varying QoS needs. It employs a coarse provisioning
scheme with deep reinforcement learning and a shape-based
heuristic to optimize resource utilization and QoS.

The subsequent works in [9], [10], and [7] explore end-
to-end characteristics, encompassing both RAN and Core
segments. However, they only consider a single service
category (URLLC). In particular, [9] develops a DRA al-
gorithm that minimizes end-to-end delay while ensuring a
minimum service rate and maximum reliability, considering
VNF mapping in both the core and access networks to
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minimize end-to-end delay and ensure network slice relia-
bility. Similarly, in [10], the author discusses how to meet
the reliability and latency requirements in URLLC using
stochastic network calculus (SNC). The paper constructs a
tandem model that describes communication in the 5G net-
work and analyzes parameters influencing the delay. Lastly,
[7] proposes an NFV-enabled 5G paradigm for industry
applications, supporting URLLC through service chain ac-
celeration and dynamic blockchain-based spectrum resource
sharing among various applications running on NFV-based
equipment.

The remaining works (Table 1) are focused on core
network functions and do not consider RAN characteristics.
Moreover, it is important to note that none of these works
address two or more 5G service categories simultaneously;
they are generally dedicated to a single category or agnostic
towards a specific category. For instance, [13] proposes an
analytical model based on CTMC, along with an optimiza-
tion problem, to determine the optimal number of virtual
resources for maximizing task execution capacity. The pa-
per jointly considers contention-based communications for
task offloading, parallel computing, and the occupation of
failure-prone MEC processing resources, without focusing
on a specific service category. Similarly, [12], [11], and
[8] do not specify service categories. In [12], the authors
propose a stochastic geometry and CTMC-based spatiotem-
poral framework to analyze the intertwined communication
and computation performance of edge computing systems,
focusing on the influence of various parameters on task re-
sponse delay. In [11], an online task offloading and resource
allocation approach for edge-cloud orchestrated computing
is proposed, aiming to minimize the average task latency
using a mixed-integer optimal decision approach. Lastly, [8]
designs a task offloading strategy for MEC systems to en-
hance user experience quality and increase energy efficiency.
The paper establishes a model, formulates a joint optimiza-
tion problem, and analyzes the influence of parameters on
the task offloading strategy to achieve optimal results.

The final set of works includes previous studies on dy-
namic resource allocation in core networks supporting a sin-
gle service category (URLLC). For instance, [17] proposes
an analytical CTMC framework to evaluate a hybrid virtual
MEC environment that combines the strengths of Virtual
Machines (VMs) and Containers to meet URLLC constraints
while providing cloud-like Virtual Network Function (VNF)
elasticity. Similarly, [18] introduces a single MEC-NFV
node model that enables resource pre-initialization to mit-
igate the negative effects of VNF failures and setup times.
Finally, [19] presents another analytical model to effectively
dimension a MEC-enabled UAV node, considering avail-
ability, power consumption, reliability, and latency perspec-
tives.

In this work, we focused on the DRA problem in the
core network segment, utilizing CTMC as the main math-
ematical tool. However, this work introduces a key aspect
that distinguishes it from the previously discussed litera-
ture: it addresses two 5G service categories, eMBB and

URLLC, within a single model. Additionally, it incorporates
other critical factors, such as failure possibility, setup and
repair times, and the evaluation of system metrics, including
availability, power consumption, and response time, as re-
described in the following sections. Table 1 summarizes the
related work contributions in terms of addressed problems,
network segments, 5G service categories, and approaches
adopted for modeling.
2.2. Model Assumptions

There is currently no consensus on the size, computa-
tional power, or appropriate virtualization technology for
the MEC-NFV architecture [20]. Decisions regarding these
aspects may depend on technical and business parameters,
such as existing suppliers and contracts that may constrain
the choice of virtualization technology available to Mo-
bile Network Operators, available site facilities, supported
applications, and their requirements, estimated user load,
operation, and deployment costs. [21]. While container-
based virtualization has gained significant attention, much
of the literature remains agnostic towards specific virtual-
ization technologies, reflecting a lack of commitment to the
feasibility of their proposals. Containers are software unities
that package source code, libraries, and dependencies, offer-
ing portable, isolated environments for running applications
[22].

More importantly, current virtualization technology may
struggle to accommodate the data volume and specific re-
quirements of 5G service categories. While virtualization
offers flexibility, it also introduces overhead that can de-
grade network performance compared to non-virtualized
systems, especially for applications with strict low-latency
requirements [23]. Therefore, it is crucial to consider events
that may hinder the communication process, such as con-
tainer failures and setup delays. In this section, we further
evaluate the previously described works, focusing on the
key considerations regarding container usage in the MEC-
NFV architecture, aiming to provide more realistic analytical
models.

The primary challenge of using containers in MEC-NFV
infrastructure is their ability to isolate different VNFs within
the same environment, compared to virtual machines, since
container-based VNFs share a common operating system
[24]. Containerization introduces multiple security risks, as
all containers within an OS share a single kernel. Con-
sequently, a breach in the OS kernel can compromise all
dependent containers. Furthermore, isolating faults within
containers is not trivial, and a fault can be replicated across
subsequent instances. In addition to failures, we evaluate two
other phenomena: (1) the VNF instantiation process, which
represents the delay until a VNF is ready to process a request
after being turned off. It may comprise initializing the kernel
image and launching the specified function. (2) The repair
time denotes the duration taken for a VNF to recover from
a failure event. Neglecting these factors can be problematic
and result in nodes with underestimated size, for example.
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Table 1
Problem, Network Segment, Service Types, and Mathematical Tools.

Work Problem Network Segment 5G service Types Mathematical Tools
[4] Scheduling and DRA RAN URLLC, eMBB Combinatorial Programming
[5] Scheduling and DRA RAN URLLC, eMBB Queueing Theory
[6] Scheduling and DRA RAN URLLC, eMBB Queueing Theory
[15] DRA RAN URLLC, eMBB, mMTC Queueing Theory
[16] DRA RAN URLLC, eMBB, mMTC Queueing Theory
[13] DRA CORE (MEC) n/a CTMC, Stochastic Geometry
[9] DRA RAN and CORE URLLC Graph Theory
[10] Delay Bound RAN and CORE URLLC Queueing Theory, SNC
[12] Offloading CORE (MEC) n/a CTMC, Stochastic Geometry
[11] Offloading and DRA CORE (MEC) n/a n/a
[8] DRA CORE (MEC) n/a Queueing Theory
[7] DRA RAN, CORE URLLC SNC
[17] DRA CORE (MEC) URLLC CTMC
[18] DRA CORE (MEC) URLLC CTMC
[19] DRA CORE (MEC)/UAV URLLC CTMC
This Work DRA CORE (MEC) URLLC, eMBB CTMC

Moreover, some studies do consider failure events but
do not account for repair times, as seen in [11], [7], and
in [5]. This omission may impact metrics such as resource
availability and power consumption. In our work, we have
adopted the considerations from the previously mentioned
studies: [12], [17], [19] and [18], as they provide a satisfac-
tory approach to address the evaluated events, encompassing
all three phenomena. Table 2 summarizes the assumptions
made by each evaluated work.
2.3. Performance Metrics

Since the introduction of 3GPP Release 16 [1], sig-
nificant attention has been given to potential architecture
enhancements aimed at supporting URLLC services through
MEC and NFV. In addition to the fundamental performance
metrics of latency and reliability, the literature explores other
metrics, such as resource availability, which is essential for
resource provisioning and dimensioning schemes, as well
as energy-related metrics, which are particularly important
for infrastructure providers. Furthermore, it is important
to note that the interpretation of performance metrics may
vary depending on the network segment being analyzed.
This section provides an overview of the main performance
metrics examined in some of the previously described works.
Specifically, we focus on three performance metrics: Avail-
ability, Power Consumption, and Response Time, although
some works may address additional metrics.

In studies characterizing the RAN ([4], [5], [6], [15],
and [16]), the definitions of latency and reliability differ
from those used in core or edge networks. Among these,
[4] concentrates solely on latency, while [5] exclusively
examines reliability. Notably, [6] is the sole study to simul-
taneously consider both reliability and latency, which aligns
with the requirements of URLLC. In contrast, [15] and [16]
do not address reliability, latency, or energy consumption in
their analysis. The former evaluates queue length, resource
utilization, and satisfaction ratios at both the slice and system

Table 2
Model Assumptions.

Work Setup Time Failure Repair Time
[4] ✗ ✗ ✗

[5] ✗ ✓ ✗

[6] ✗ ✓ ✓

[15] ✗ ✗ ✗

[16] ✗ ✗ ✗

[13] ✗ ✓ ✓

[9] ✗ ✓ ✓

[10] ✗ ✓ ✓

[12] ✗ ✓ ✗

[11] ✗ ✓ ✗

[8] ✗ ✗ ✗

[7] ✗ ✓ ✗

[17] ✓ ✓ ✓

[18] ✓ ✓ ✓

[19] ✓ ✓ ✓

This Work ✓ ✓ ✓

levels, while the latter examines queue length, resource
usage, slice satisfaction, and isolation.

The remaining works primarily focus on the backhaul,
leading to differences in the interpretation of certain per-
formance metrics compared to the RAN.. Latency-related
metrics are commonly evaluated in some of these works, as
in [12]. However, it is common to find evaluations involving
two or more metrics simultaneously. For instance, in [13] ex-
plores availability and reliability while imposing an energy
constraint per device. Since no dedicated formulation for the
energy metric is provided, it is treated as a constraint rather
than a distinct performance metric. In contrast, [10], [9], and
[7] focus exclusively on reliability and latency. Furthermore,
[11] and [8] both evaluate energy-related metrics alongside
latency.

The subsequent set of works represents a more compre-
hensive approach to performance metrics, as they address
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Table 3
Performance Metrics.

Work Availability Reliability Energy Latency
[4] ✗ ✗ ✗ ✓

[5] ✗ ✓ ✗ ✗

[6] ✗ ✓ ✗ ✓

[15] ✗ ✗ ✗ ✗

[16] ✗ ✗ ✗ ✗

[13] ✓ ✓ ✗ ✗

[9] ✗ ✓ ✗ ✓

[10] ✗ ✓ ✗ ✓

[12] ✗ ✗ ✗ ✓

[11] ✗ ✗ ✓ ✓

[8] ✗ ✗ ✓ ✓

[7] ✗ ✓ ✗ ✓

[17] ✓ ✓ ✓ ✓

[18] ✓ ✗ ✓ ✓

[19] ✓ ✓ ✓ ✓

This Work ✓ ✗ ✓ ✓

three or more metrics. For example, [18] evaluates availabil-
ity, energy, and latency. Similarly, [17] and [19] consider
all these three metrics. In our work, we evaluate three
performance metrics, excluding reliability, which is adopted
as an input parameter (failure rate). Its value is consequently
reflected in the system performance when homogeneous
virtualization technology is employed. Therefore, our focus
is on availability, power consumption, and response time,
considering both eMBB and URLLC service types. Table
3 summarizes the related works based on their performance
metrics.

3. System Model
Analytical models can be valuable tools for efficiently

evaluating large-scale distributed MEC infrastructure projects
since simulation and testbeds may not always be feasible.
This study proposes an analytical model to analyze re-
source allocation, dimensioning, and configuration of edge
computing systems based on MEC and NFV technologies
hosting eMBB and URLLC services. The model enables
evaluation of the impact of service and node parameters,
as well as the overhead introduced by virtualization, on
both services and system performance. Fig. 1 illustrates the
modeled system, where both eMBB (blue flow) and URLLC
(red flow) packets originating from UEs are processed by
the RAN, passed on to the MEC node and are handled
by containerized VNFs, which are scaled accordingly. This
model was designed in isolation from the RAN, Core, and
Central Cloud, hence, the only uncertainty is related to the
virtual components themselves, i.e., setup, failure, and repair
events.

The system consists of a finite amount of containers and
buffer positions that can be allocated to each type of service,
eMBB or URLLC. In our model, each VNF runs equally
and independently on a single container, and a centralized
control unit determines if requests are admitted. A request
admission occurs if there are enough resources, i.e., if either

containers or buffer positions are available, thus, if admitted,
each request may be processed or queued.

With regards to the auto-scaling mechanism, a dynamic
VNF auto-scaling strategy was embedded into our formu-
lation to cope with the sudden load increase caused by the
intensive request periods. Thus, before the proper processing
phase, the containerized VNF must be initialized, which
incurs a delay (setup time). In addition, the possibility of
failure during service and its respective repair time is also
embedded in our formulation. In this case, the containerized
VNF is restarted, and the request is either reallocated to
another available container or, if there are no available
resources, it is placed back in its respective service queue
with higher priority than new requests. In both cases, the
service processing is restarted.

In terms of service prioritization, the following policy
has been adopted: (1) if there are both URLLC and eMBB
services to be served, URLLC services have higher priority,
thus, the containers that are being released or activated are
allocated first to URLLC services. (2) In the case where
there is a URLLC service waiting in queue for available
resources and an eMBB service has been completed, the
released container is restarted to be used by the URLLC
service. However, if there are other available containers, the
current one will be allocated to a sequential eMBB service or
deactivated if the eMBB queue is empty. (3) The preemption
of the lower-priority service (eMBB) that is being processed
is not allowed.

Since MEC-NFV systems are inherently stochastic, in-
volving random events like failures, setup and repair times,
dynamic workloads, and resource allocation variations, we
have adopted CTMCs to model the system. CTMCs are
particularly well-suited for capturing these random pro-
cesses, as they model state transitions based on probabilistic
rules, helping to analyze their impact on availability, la-
tency, and power consumption. Unlike other formalisms, like
Petri Nets, which typically rely on simulations for perfor-
mance evaluation, the elegant structure of CTMCs allows for
closed-form expressions, providing precise and analytical
insights into useful metrics. Furthermore, CTMCs effec-
tively represent the dynamic state transitions of containers
(e.g., idle, setup, and busy) in dynamic resource allocation-
based MEC-NFV systems. In our scenario, which involves
the coexistence of uRLLC and eMBB services within the
same MEC-NFV node, CTMCs offer a robust framework to
analyze the impact of resource sharing, service prioritiza-
tion, and various configurations on both system-level metrics
(e.g., power consumption) and service-level metrics (e.g.,
response time and availability) [25].

Following the above description, the system is modeled
using an M/N/c/k+K queue with two types of users, priori-
tization, failure, initialization time, First-Come-First-Served
(FCFS) service discipline, and a limited buffer for each user
type, 𝑘 for URLLC and 𝐾 for eMBB. The model states are
represented by the tuple (𝑖, 𝑗, 𝑙, 𝑚), where 𝑖, 𝑗, 𝑙, 𝑚 ∈ 𝑁 .
Here, 𝑖 and 𝑗 denote the number of URLLC and eMBB
services, respectively, and 𝑙 and 𝑚 represent the number
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Figure 1: Edge Node Resource Allocation Flow.

of active containers for each user type, with 𝑙 + 𝑚 being
smaller or equal to the maximum number of containers (𝑐).
The service request arrivals follow a Poisson process with
rate 𝜆𝑢 for URLLC services and 𝜆𝑒 for eMBB. The service
processing is provided by the 𝑐 available containers, with
exponentially distributed service times, having rates 𝜇𝑢 for
URLLC and 𝜇𝑒 for eMBB. Similarly, both failure occur-
rences and container initialization times follow exponential
distributions with rates 𝛾 and 𝛼, respectively. The setup rate
(𝛼) denotes the number of container instantiations completed
per unit of time. A higher setup rate indicates a faster VNF
readiness and is the inverse of the setup time. Similarly, the
failure rate (𝛾) represents the number of failures processing
per unit of time. A higher failure rate indicates a less reliable
system. Fig. 2 illustrates all possible CTMC transitions and
states of the proposed system, along with its respective
parameters. These states can be categorized into seven major
types, as outlined below.

• A state that represents the empty system;
• States that indicate at least one user (URLLC or

eMBB), no active containers, and the number of
URLLC and eMBB users within the limits (𝑘 and 𝐾);

• States that denote at least one URLLC user being
served and no eMBB users in the system;

• States that represent the system with at least one
eMBB service being processed and no URLLC users
in the system;

• States that represent the system with at least one
URLLC service being processed and no eMBB users
occupying containers;

• States modeling the system with users of both types,
but only eMBB services being processed;

• States that describe the system with both and at least
one service of each type being processed.

Table 4 summarizes these major state types, which encom-
pass various subgroups and their associated conditions for
the balance equations.
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Figure 2: Generic CTMC State Diagram.

3.1. Performance Metrics
This section describes the steady-state analysis of the

adopted CTMC, followed by the derivation of two perfor-
mance metrics for each user type (eMBB and URLLC),
namely Availability (𝐴) and Mean Response Time (𝑇 ) and
also the mean Power Consumption (𝑃𝐶). In the following
sections, 𝜋𝑖,𝑗,𝑙,𝑚 denotes the steady-state probability of the
state (𝑖, 𝑗, 𝑙, 𝑚).
3.1.1. Availability (A)

The adoption of MEC and NFV environment near the UE
is widely acknowledged for its potential to reduce latency
and enhance reliability. However, the limited resources of
edge nodes impose constraints on their service capacity,
which is typically referred to as system availability. Conse-
quently, when the maximum capacity is reached, two pri-
mary alternatives arise: forwarding the flow to a neighboring
MEC node or redirecting it to the central cloud [26]. Both
alternatives involve establishing a new route with multi-
ple intermediate hops, introducing significant uncertainty
concerning latency and reliability. Therefore, analyzing the
availability of edge nodes becomes essential. This issue
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Table 4
States Description.

State(s) Condition(s) Meaning
(0, 0, 0) n/a Empty system.

(𝑖, 𝑗, 0, 0)
(0 ≤ 𝑖 ≤ 𝑘),

(0 ≤ 𝑗 ≤ 𝐾) and
(𝑖 + 𝑗 > 0)

System with at least one
user and no active

containers.

(𝑖, 0, 𝑙, 0)
(0 ≤ 𝑖 ≤ 𝑘),

(0 < 𝑙 ≤ 𝑐) and
(𝑘 > 𝑐)

System with at least one
URLLC user being served

and no eMBB user.

(0, 𝑗, 0, 𝑚)
(0 ≤ 𝑗 ≤ 𝐾),

(0 < 𝑚 ≤ 𝑐) and
(𝐾 > 𝑐)

System with at least one
eMBB user being served

and no URLLC user.

(𝑖, 𝑗, 𝑙, 0)
(0 < 𝑖 ≤ 𝑘),

(0 < 𝑗 ≤ 𝐾) and
(0 < 𝑙 ≤ 𝑐)

System with users of both
types and at least one
URLLC and no eMBB

being served.

(𝑖, 𝑗, 0, 𝑚)
(0 < 𝑖 ≤ 𝑘),

(0 < 𝑗 ≤ 𝐾) and
(0 < 𝑚 ≤ 𝑐)

System with users of both
types with at least one
eMBB and no URLLC

being served.

(𝑖, 𝑗, 𝑙, 𝑚)
(0 < 𝑖 ≤ 𝑘),

(0 < 𝑗 ≤ 𝐾) and
(0 < 𝑙, 𝑚 ≤ 𝑐)

System with at least one
user of each type being

served.

is particularly crucial in the context of URLLC services,
as compared to eMBB. While MEC availability remains
important for eMBB applications, which focus more on
delivering high data rates, the URLLC category places a
stronger emphasis on meeting stringent latency and reliabil-
ity requirements.

In our model, the MEC availability refers to the sys-
tem’s ability to offer the minimum amount of functional
and accessible VNFs or buffer positions. Additionally, due
to the service prioritization, the MEC node availability is
segmented based on each service category, i.e., URLLC
(𝐴𝑈 ) and eMBB (𝐴𝐸). These availabilities are described in
Eqs. 1 and 2, which are derived by summing the probabilities
of all states except those representing full capacity for each
type of service.

𝐴𝑈 = 1 −
𝐾
∑

𝑗=0

𝑐
∑

𝑙=0

𝑚𝑖𝑛(𝑐−𝑙,𝑗)
∑

𝑚=0
𝜋𝑘,𝑗,𝑙,𝑚 (1)

𝐴𝐸 = 1 −
𝑘
∑

𝑖=0

𝑐
∑

𝑚=0

𝑚𝑖𝑛(𝑐−𝑚,𝑖)
∑

𝑙=0
𝜋𝑖,𝐾,𝑙,𝑚 (2)

3.1.2. Power Consumption (PC)
The computational power consumption is an important

component of operational costs and must be factored into
the service provider’s resource planning to optimize the
cost-performance trade-off. In our model, the mean power
consumption (𝑃𝐶) is determined by combining the mean
number of virtual resources and energy consumption con-
stants for each container’s operating state: Setup and Busy.

The power consumption (in Watts) of a single container in
the setup state is denoted as 𝑃𝐶𝑇

𝑠𝑒𝑡𝑢𝑝 while in the busy state,
it is represented as 𝑃𝐶𝑇

𝑏𝑢𝑠𝑦. It is important to note that this
power consumption metric is computed for the combined set
of service categories.

The mean number of containers 𝐶𝑇 in each state (Busy
and Setup) is defined by Eqs. (3) and (4) and are detailed
in the next few lines. Eq. (3) captures the mean amount of
containers in the busy state by iterating over each system
state with service loads, and varying the combination of the
number of each container type (URLLC and eMBB), from 0
up to the number of services of a particular category, or until
the maximum available resources in the system. Moreover,
Eq. (4) calculates the mean number of containerized VNFs
in the setup state by iterating over system states where
the number of online services exceeds the total number of
available resources (containers) for each service category.
Finally, the total mean power consumption (𝑃𝐶) is given by
Eq. (5).

𝐶𝑇 𝑏𝑢𝑠𝑦 =
𝑘
∑

𝑖=0

𝐾
∑

𝑗=0

𝑚𝑖𝑛(𝑐,𝑖)
∑

𝑙=0

𝑚𝑖𝑛(𝑐−𝑙,𝑗)
∑

𝑚=0
(𝑙 + 𝑚)𝜋𝑖,𝑗,𝑙,𝑚 (3)

𝐶𝑇 𝑠𝑒𝑡𝑢𝑝 =
𝑘
∑

𝑖=0

𝐾
∑

𝑗=0

𝑚𝑖𝑛(𝑐,𝑖)
∑

𝑙=0

𝑚𝑖𝑛(𝑐−𝑙,𝑗)
∑

𝑚=0
𝑚𝑖𝑛[(𝑐 − 𝑙 − 𝑚),

(𝑖 + 𝑗 − 𝑙 − 𝑚)]𝜋𝑖,𝑗,𝑙,𝑚

(4)

𝑃𝐶 = 𝑃𝐶𝑇
𝑠𝑒𝑡𝑢𝑝𝐶𝑇 𝑠𝑒𝑡𝑢𝑝 + 𝑃𝐶𝑇

𝑏𝑢𝑠𝑦 𝐶𝑇 𝑏𝑢𝑠𝑦 (5)
3.1.3. Response Time (T)

The response time plays a vital role in URLLC applica-
tions, while also maintaining relevance for eMBB applica-
tions. Recognizing that the significance may vary depending
on the service category, we have opted to analyze them
separately, as denoted by Eqs. 8 and 9. The Response Time
for each category is defined as the interval between the
service arrival (at the edge node) and its completion, which
includes any setup/restart times if these events are triggered
during service attendance. The response time is obtained by
calculating the mean number of online services in the system
for each category, as shown in Eqs. 6 and 7, and then dividing
them by the accepted service rate.

𝑈𝑈 =
𝑘
∑

𝑖=0

𝐾
∑

𝑗=0

𝑚𝑖𝑛(𝑐,𝑖)
∑

𝑙=0

𝑚𝑖𝑛(𝑐−𝑙,𝑗)
∑

𝑚=0
𝑖𝜋𝑖,𝑗,𝑙,𝑚 (6)

𝑈𝐸 =
𝑘
∑

𝑖=0

𝐾
∑

𝑗=0

𝑚𝑖𝑛(𝑐,𝑖)
∑

𝑙=0

𝑚𝑖𝑛(𝑐−𝑙,𝑗)
∑

𝑚=0
𝑗𝜋𝑖,𝑗,𝑙,𝑚 (7)

𝑇𝑈 =
𝑈𝑈

𝜆𝑈𝐴𝑈
. (8)
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𝑇𝐸 =
𝑈𝐸

𝜆𝐸𝐴𝐸
. (9)

After describing the CTMC-based model for MEC-NFV
systems supporting two service types, including practical as-
pects (e.g., container setup time, processing failures, and ser-
vice prioritization) and deriving useful performance metrics,
the next section presents the model validation to demonstrate
its consistency in evaluating MEC-NFV systems.

4. Validation and Analysis
The analytical results were validated against extensive

discrete-event simulations (Figs. 3a-17) using a Coloured
Petri Nets-based simulator [27], where the lines denote the
analytical and the markers represent simulation results.We
have followed 3GPP Release 16 (TR 38.824) [1], which
identified URLLC use cases in the factory automation, smart
transportation, and electrical power distribution, to define
the range of arrival rate values used in our scenarios. These
values were adapted to our node scale to capture scenarios
ranging from low to high user loads. With the exception of
the first scenario (Section 4.1), which evaluates the impact
of each user type on each other by adopting multiple eMBB
request rates (𝜆𝐸), each subsequent scenario simultaneously
assesses the influence of a pair of parameters: (Section
4.2) container setup rates (𝛼) and failure rates (𝛾), which
concomitantly analyzes the impact of hardware and software
improvements (lower time to make the functions ready to
process the services) and different levels of container reli-
ability on the service performance; (Section 4.3) URLLC
service rate (𝜇𝑈 ) and eMBB service rate (𝜇𝐸), with the
objective to illustrate how enhancements in service process
speed, achieved through the utilization of advanced pro-
cessing units and optimized algorithms, for example, can
positively impact the system’s overall functionality; (Section
4.4) total number of containers (c) and the buffer size for
eMBB users (K), which demonstrates how augmenting the
parallel processing capacity of the system affects both its
cost and the quality of service. Concomitantly, it also con-
siders the implications of increasing the system’s capacity
to admit a higher number of eMBB services; and (Section
4.5) total number of containers (c) and the buffer size for
URLLC users (k). This section shares a similar objective to
the previous one but focuses on the impact of expanding the
system’s capacity to accommodate URLLC service requests.

In all scenarios, the URLLC service arrivals (𝜆𝑈 ) ranged
from 2.5 to 25 requests/ms in order to analyze the system
performance under different URLLC loads. Unless stated
otherwise, the baseline values for failure (𝛾) and setup rates
(𝛼) were set to 0.001 and 1 unit/ms, respectively, in accor-
dance with [28]. For container power consumption in differ-
ent operation states, we adopted the values from the network-
intensive experiment in [22], which are summarized in Table
5. The remaining parameters can be found in Table 6 with
their descriptions in Table 7.

Table 5
Power Consumption Values.

Parameter Value
Idle Container Energy Consumption (𝑃 𝐶𝑇

𝑖𝑑𝑙𝑒) 0 W
Setup Container Energy Consumption (𝑃 𝐶𝑇

𝑠𝑒𝑡𝑢𝑝) 8 W
Busy Container Energy Consumption (𝑃 𝐶𝑇

𝑏𝑢𝑠𝑦) 23 W

The following sections (4.1 - 4.5) display average results
for each scenario. For each point, 10 simulation instances
were conducted, with each instance comprising 27,000,000
simulation steps and 2,200,000 services processed. The sim-
ulations were performed on a computer equipped with an
Intel Core i7-9750H 6-core processor (4.50 GHz), 16 GB of
memory, and running the Windows 10 operating system. The
Bootstrap method [29] was employed, with both resample
size and the number of (re)samplings set at 30 and 1000,
respectively. This was done considering a 95% confidence
level, nonetheless, bars were omitted due to the negligible
difference between upper and lower bounds and to prevent
overcrowding the graphs.
4.1. Effects of the eMBB load (𝜆𝐸)

The eMBB service may be seen as a natural evolution
of the mobile broadband provided by LTE networks. This
category typically exhibits varying user load demands over
time and across different areas (e.g., urban, suburban, and
rural). To analyze the impact of different eMBB loads coex-
isting with URLLC services in the same MEC-NFV node,
this scenario varies the eMBB service request arrival rate,
from 5 up to 30 arrivals/ms, resulting in six curves. They
represent different eMBB loads, where the blue curves (light
and dark) correspond to small loads (5 and 10, respectively),
green and yellow to medium loads (15 and 20, respectively),
and red and orange to higher loads (25 and 30, respectively).

Regarding the Availability of both eMBB and URLLC
users, Figs. 3a-3b depict strictly decreasing curves. Notably,
the Availability for eMBB users (Fig. 3a) displays a greater
disparity among the configurations, whereas the results for
URLLC users (Fig. 3b) exhibit overlapping patterns. This
observation aligns with expectations, given that the URLLC
service category is accorded higher priority over eMBB,
rendering the eMBB arrival rate (𝜆𝐸) inconsequential for
URLLC Availability. Conversely, in Fig. 3a, eMBB users
contend for unoccupied containers, i.e., those not utilized
by either eMBB or URLLC users. As the curves represent
varying eMBB user loads, the overall eMBB Availability
fluctuates, with higher values corresponding to curves indi-
cating lower eMBB arrival rates (e.g., 𝜆𝐸 = 5 and 𝜆𝐸 =
10). Consequently, the curves in Fig. 3a exhibit a more
pronounced decline compared to those in Fig. 3b, as the
former is influenced by both eMBB and URLLC arrival
rates while the latter is solely influenced by the URLLC
arrival rate. Moreover, it is noteworthy that the eMBB user
Availability (Fig. 3a) converges to zero at 𝜆𝑈 = 22.5,
whereas the URLLC Availability (Fig. 3b) remains above
80% at the same point. These findings appear reasonable for
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Table 6
Experiment Sets.

Section Varying Parameters 𝜆𝐸 𝛼 𝛾 𝜇𝑈 𝜇𝐸 c K k
4.1 𝜆𝐸 5,10,15,20,25,30 1 10−3 2 2 10 20 20
4.2 𝛼, 𝛾 10 1,2,4 10−2, 10−3 2 2 10 20 20
4.3 𝜇𝑈 , 𝜇𝐸 10 1 10−3 1,2,4 1,2 10 20 20
4.4 c, K 10 1 10−3 2 2 4,8,12 16,24 20
4.5 c, k 10 1 10−3 2 2 4,8,12 20 16,24
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Figure 3: Availability under Different URLLC (𝜆𝑈 ) and eMBB(𝜆𝐸) loads.

Table 7
System Parameters.

Parameter Description
𝑐 Maximum number of containers
𝑘 URLLC buffer size
𝐾 eMBB buffer size
𝜆𝑢 URLLC arrival rate
𝜆𝑒 eMBB arrival rate
𝜇𝑢 URLLC service rate
𝜇𝑒 eMBB service rate
𝛼 Container setup rate
𝛾 Service failure rate

the majority of future service categories but are considered
suboptimal for URLLC standards.

The Response Time (Figs. 4a-4b), showcase significant
disparities, starting with the employed scale. In Fig. 4a, the
Response Time for eMBB users exhibits a wide range of
values spanning from 1 ms up to 300 ms. In contrast, Fig. 4b
depicts a considerably narrower range, with the Response
Time for URLLC users ranging from 0.8 ms to 0.94 ms,
these values indicate that across all load scenarios assessed,
the latency requirements for delivering all URLLC services
listed in Table 8 are consistently met. Despite these distinc-
tions, the curves in both figures exhibit substantial overlap
across the majority of the evaluated points, converging to
the same final value. However, the key distinction lies in
their respective behaviors. In Fig. 4a, the curves demonstrate
a monotonically increasing trend, while Fig. 4b displays
a sudden drop in the Response Time for URLLC users
until 𝜆𝑈 = 10. Beyond this, all curves resume an upward

trajectory, converging to 0.89 ms at 𝜆𝑈 = 25, which is
lower than the initial value of approximately 0.94 ms at
𝜆𝑈 = 2.5. This unexpected behavior can be attributed to
the container setup delay, during which requests await the
completion of container loading. At the beginning of the
curves, the eMBB service loads are at least twice as high as
the URLLC request loads. Consequently, the containers are
predominantly occupied with eMBB services. As a result,
when a URLLC service request arrives, it must wait not
only for a container initialization but also for an ongoing
eMBB service to complete, release the container, and allow
it to be reconfigured for the URLLC request to serve the
URLLC request. This explains the high URLLC response
time under low URLLC load. However, as the URLLC
service load increases, a greater number of VNFs remain
instantiated for this service category, reducing the chance
of eMBB accessing resources due to service prioritization.
Consequently, the likelihood of URLLC service requests
waiting for eMBB service completions and container recon-
figurations decreases. Furthermore, the new URLLC request
is more likely to be handled by a container that is already
prepared for processing.

Due to this, all curves experience a decrease in Response
Time from 𝜆𝑈 = 2.5 to 𝜆𝑈 = 10, followed by a steady in-
crease. However, the Response Time values do not reach the
same levels as for 𝜆𝑈 = 2.5, as all containers have already
been initialized. Additionally, in Fig. 4b, slight variations in
the results are observed between 𝜆𝑈 = 2.5 and 𝜆𝑈 = 7.5,
attributed to the presence of eMBB users. These users also
contribute to the (re)initialization of containers when an
eMBB request is completed and immediately followed by
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Figure 4: Response Time under Different URLLC (𝜆𝑈 ) and eMBB(𝜆𝐸) loads.

Table 8
Examples of eMBB and URLLC Applications.

Work Use Case Latency Category
[2] Factory Automation 0.25 - 10 ms URLLC
[2] Smart Transportation 10 - 100 ms URLLC
[2] Robotics/Telepresence 1 ms URLLC
[2] Health Care 1 - 10 ms URLLC
[30] AR/VR 120 FPS < 8 ms eMBB
[31] Fixed Wireless Access 4 ms eMBB
[32] 8K Video Streaming < 20 ms eMBB
[33] Smart Office < 10 ms eMBB

a URLLC request, triggering a new container initialization,
which explains the small differences in this interval.

The last performance metric for this scenario is the
Energy Consumption (Fig. 5), which exhibited two different
behaviors from 𝜆𝑈 = 2.5 to 𝜆𝑈 = 10: an increasing trend
for part of the configurations (𝜆𝐸 = 5 and 𝜆𝐸 = 10)
and a decreasing for the remaining curves. This is due to
the summation of the arrival rates of both user types, i.e.,
when the sum of the arrival rates is lower than the total
processing container capacity, the curves tend to increase
since the idle containers are being activated to meet newly
arrived requests. Conversely, when these rates exceed the
processing capacity of the system, a slight decreasing trend
can be observed in the curves. This is attributed to the re-
initialization of containers to prioritize URLLC requests.
During container re-initialization, the containers spend more
time in setup mode, which uses less energy compared to a
processing state, thus resulting in lower energy consump-
tion. The curves tend to converge as the arrival rate of
URLLC requests increases, causing fewer eMBB requests
to be served and subsequently reducing the number of con-
tainer re-initializations for different service types. As the
containers are no longer being reinitialized, they spend more
time in the processing state, leading to a new increase in
overall energy consumption.
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Figure 5: Power Consumption under Different URLLC (𝜆𝑈 )
and eMBB(𝜆𝐸) loads.

4.2. Effects of the container setup rate (𝛼) and
service failure rate (𝛾)

This section describes the impact of varying the con-
tainer setup rate (𝛼) in combination with changes in the
service failure rate (𝛾). The availability of eMBB services,
as in Fig. 6a, exhibited significant variations among the
curves with different setup rates (𝛼 = 1, 𝛼 = 2, and 𝛼 =
4), while overlapping with configurations having the same
setup rate but different failure rates. Notably, the absolute
differences in availability reached up to 30% for 𝜆𝑈 = 10
when comparing the 𝛼 = 1 (light and dark blue) and 𝛼 =
4 (red and orange) configurations. Higher container setup
rates were observed to result in increased availability and
reduced user waiting times in the buffer. Interestingly, the
experiment revealed that even when the service failure rate
was increased by a factor of ten, it did not significantly
impact the system availability for eMBB users, which can
be attributed to the buffer’s capacity to accommodate failed
service requests. Moreover, consistent with the previous
scenario, the availability for eMBB applications diminished
rapidly across all tested configurations, in contrast to the
URLLC availability shown in Fig. 6b, which experienced a
comparatively smaller impact due to its higher priority.
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(a) eMBB.
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(b) URLLC.
Figure 6: Availability under Different Container Setup (𝛼) and Failure (𝛾) Rates.
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Figure 7: Response Time under Different Container Setup (𝛼) and Failure (𝛾) Rates.

Regarding the availability for URLLC users (Fig. 6b),
it was observed that the container setup rate (𝛼) had a
relatively minor impact on the availability curves compared
to the eMBB case. Specifically, the differences in availabil-
ity among the curves with different 𝛼 values were limited
to approximately 2% at 𝜆𝑈 = 15, when comparing the
𝛼 = 1 (light and dark blue) and 𝛼 = 4 (red and orange)
configurations. As for the impact of different failure rates,
a more pronounced difference was noted when compared to
the eMBB case in Fig.6a, where overlapping occurred. For
the URLLC, container failures produced a slight difference
among the curves with the same 𝛼, making it possible to
distinguish between, for instance, the light and dark blue
curves. In other words, the URLLC is significantly more
sensitive to the failure rate than the eMBB.

When examining the eMBB Response Time depicted in
Fig. 7a, it becomes apparent that a higher container setup
rate leads to a reduced response time, as expected. Initially,
since there is little competition for resources between eMBB
and URLLC users, the difference between the evaluated
configurations is of a few milliseconds. However, as the
URLLC request arrival rate intensifies, this disparity be-
comes more pronounced. The increasing URLLC arrival
rate creates a higher demand for resources, and since it

has a higher priority, the eMBB requests are interrupted,
either restarting service in another container or waiting in the
buffer for available resources, causing the eMBB response
time to be more affected. In such cases, only system con-
figurations with 𝛼 equal 4 has the capacity to handle high-
resolution video streaming services, which demand a latency
of under 20 milliseconds [32] when 𝜆𝑈 reaches 20 arrivals
per millisecond. It was also noticeable that the failure rate
had little impact in this experiment, which explains the pair
of overlapped curves with the same values of 𝛼.

With regards to the Response Time of URLLC users
(Fig. 7b), the container setup rate has a more pronounced
impact compared to the previous scenario in Fig. 4a, where
the only varying parameter was 𝜆𝐸 . This is particularly
evident at the initial stages of the curves when containers
are predominantly powered off or allocated to the eMBB
users. During this period, the low arrival rate of URLLC
services translates to shorter waiting times for a container
to become available, reducing the overall response time.
However, as the URLLC service arrival rate increases, this
disparity diminishes, ultimately converging towards the end
of the curves when the majority of containers are occupied
by URLLC services.
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Furthermore, it is noteworthy that a higher failure rate
leads to an increase in the response time, since the failure
occurrence becomes more frequent, especially for higher
𝜆𝑈 values, impacting the service time due to the need for
container resets. However, similarly to the Availability in
Fig. 6b, this remains relatively insignificant compared to the
differences caused by altering the setup rate. This results in
a more distinguishable difference among the pair of curves
that were overlapping (e.g., light and dark blue). Finally,
as the curves approach the system’s capacity, a greater
number of containers remain active to accommodate the
incoming service requests, resulting in a temporary decline
in the response time. Nevertheless, as resource competition
intensifies within the URLLC service category, the response
time gradually escalates once again and all curves tend to
converge around 0.9 ms. At this point, all system configu-
rations remain capable of providing service to robotic and
telepresence systems, which require a latency of 1 ms [2].

Regarding energy consumption (Fig. 8), higher container
setup rates, such as the green/yellow (𝛼 = 2) and red/orange
(𝛼 = 4) curves, lead to greater energy consumption. This
can be attributed to the fact that with higher setup rates, less
time is spent in the setup phase, making containers more
frequently available. Since the processing phase requires
more power compared to the setup phase, the total energy
consumption monotonically increases, converging around
𝜆𝑈 = 25 to 225 W. In brief, while higher container setup
rates enhance both availability (Figs. 6a-6b) and response
time (Figs. 7a-7b), they also contribute to higher energy
consumption. Additionally, although the impact was small,
it is worth noting that curves depicting higher service failure
rates exhibit lower energy consumption when comparing the
pair of curves with the same 𝛼 (e.g., light and dark blue
lines). This is due to the increased number of container
resets for failed requests, leading to a higher proportion of
containers in the setup state.

2.5 5 7.5 10 12.5 15 17.5 20 22.5 25
URLLC Arrival Rate (6

U
 Requests/ms)

175

200

225

250

P
ow

er
 C

on
su

m
pt

io
n 

(W
)

,=1, .=0.001
,=1, .=0.01
,=2, .=0.001
,=2, .=0.01
,=4, .=0.001
,=4, .=0.01

Figure 8: Power Consumption under Different Container Setup
(𝛼) and Failure (𝛾) Rates.

4.3. Effects of the URLLC service rate (𝜇𝑈 ) and
eMBB service rate (𝜇𝐸)

This section assesses the influence of different service
rates on each user type, specifically the URLLC service rate

(𝜇𝑈 ) and the eMBB service rate (𝜇𝐸). Fig. 9a illustrates that
a higher eMBB service rate leads to increased availability
for this service category, particularly in the leftmost region
of the graph. For configurations with the same 𝜇𝑈 values,
the curve with 𝜇𝐸 = 2 exhibits higher availability compared
to those with 𝜇𝐸 = 1. For example, at 𝜆𝑈 = 7.5, the config-
uration with (𝜇𝑈 = 2, 𝜇𝐸 = 1) demonstrates an availability
of 38%, while its counterpart (𝜇𝑈 = 2, 𝜇𝐸 = 2) exhibits
62%, representing a significant difference of 24%. However,
this effect diminishes as the URLLC arrival rate increases,
resulting in convergence at the rightmost part of the graph.
Moreover, a higher URLLC service rate implies less time
spent by these requests monopolizing the resources, leading
to greater availability. This explains why configurations with
𝜇𝑈 = 1 and 𝜇𝑈 = 4 are shifted to the left and right,
respectively, compared to the adopted baseline (𝜇𝑈 = 2).

From the perspective of URLLC user availability (Fig.
9b), it is observed that the eMBB service rate (𝜇𝐸) has an
insignificant impact on this performance metric, resulting
in overlapping curves. Conversely, higher URLLC service
rates (𝜇𝑈 = 2 and 𝜇𝑈 = 4) lead to greater availability as the
requests are serviced more rapidly. For instance, at 𝜆𝑈 = 20,
configurations with 𝜇𝑈 = 1 (light and dark blue) exhibit an
availability of approximately 50%, while those with 𝜇𝑈 = 2
(green and yellow) achieve around 88%, i.e., a substantial
difference of 48%.

Regarding the eMBB response time in Fig. 10a, the
experiment demonstrates that a higher service rate for this
category, represented by configurations where 𝜇𝐸 = 2 (light
blue, yellow, and orange lines), results in shorter response
times compared to their respective counterparts with 𝜇𝐸 = 1
(dark blue, green, and red lines). However, the performance
difference between the two curves with 𝜇𝑈 = 1 (light
and dark blue) and the two curves with 𝜇𝑈 = 2 (green
and yellow) is minimal. Notably, the performance difference
becomes more pronounced for configurations with 𝜇𝑈 = 4
(red and orange lines). These configurations consistently
maintain the eMBB response time below 100ms, a threshold
considered crucial for multiple eMBB applications such as
the Fixed Wireless Access (FWA) service.

Fig. 10b further reveals that a higher service rate for
eMBB users, represented by configurations with 𝜇𝐸 = 2
(light blue, yellow, and orange lines), also leads to shorter
URLLC response times compared to their respective coun-
terparts with 𝜇𝐸 = 1 (dark blue, green, and red lines). This
is attributed to eMBB requests spending less time occupying
containers, which are then reinitialized to handle incoming
URLLC requests. However, in most cases, this difference is
below 0.1 ms and may not be significant even for URLLC
applications. Conversely, an increase in the URLLC service
rate (𝜇𝑈 = 1, 𝜇𝑈 = 2, and 𝜇𝑈 = 4) results in shorter
response times for this service category, with a more sub-
stantial impact. For example, at 𝜆𝑈 = 10, the orange curve
(𝜇𝑈 = 4, 𝜇𝐸 = 2) shows a response time of approximately
0.5 ms, whereas the yellow curve (𝜇𝑈 = 2, 𝜇𝐸 = 2) exhibits
0.8 ms. This 0.3 ms difference is significant for URLLC
applications, as some require a response time of 1.2 ms
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(a) eMBB.
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(b) URLLC.
Figure 9: Availability under Different URLLC (𝜇𝑈 ) and eMBB (𝜇𝐸) Service Rates.
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(b) URLLC.
Figure 10: Response Time under Different URLLC (𝜇𝑈 ) and eMBB (𝜇𝐸) Service Rates.

or less, while others, such as Robotics and Telepresence,
demand at most only 1 ms [2].

In configurations where 𝜇𝑈 = 1 (light and dark blue
lines), an interesting behavior is observed in Fig. 10b. As
the URLLC request arrival rate approaches the system’s
processing capacity, a decrease in the response time for this
service category is observed. This is attributed to URLLC
containers spending more time active and less time in the
setup state, thereby reducing the impact of this component.
However, shortly thereafter, there is an increase in the re-
sponse time due to competition for processing resources
within the same service category, resulting from a larger
number of URLLC requests waiting in the buffer. This
behavior is also present in configurations with 𝜇𝑈 = 2 and
𝜇𝑈 = 4, but for larger 𝜆𝑈 > 25 values, which are not
represented in this figure.

In terms of energy consumption (Fig. 11), once again,
a higher service rate for eMBB users leads to lower en-
ergy consumption, especially in the leftmost region of the
figure, corresponding to low URLLC loads, i.e., when the
system is predominantly occupied by eMBB requests. This
observation aligns with our earlier analysis on availability
(Figs. 9a-9b), where configurations with 𝜇𝐸 = 2 (light
blue, yellow, and orange lines) outperform their respective

counterparts with 𝜇𝐸 = 1 (dark blue, green, and orange
lines). In other words, higher availability corresponds to
lower energy consumption. Consequently, the configuration
order is inverted in Fig. 11, with the red and orange lines
representing the most energy-efficient configurations.

In addition, when considering the three different config-
urations with 𝜇𝑈 = 1, 𝜇𝑈 = 2, and 𝜇𝑈 = 4, significant
differences of up to 40 W were observed. For instance, at
𝜆𝑈 = 10, the configuration with 𝜇𝑈 = 4 and 𝜇𝐸 = 2 (orange
line) exhibits a consumption of approximately 175 W, while
the configuration with 𝜇𝑈 = 2 and 𝜇𝐸 = 2 (yellow line)
consumes around 215W. This finding is particularly relevant
as the experiment maintained the same amount of resources
(containers) for all curves, varying only the service rates.
In subsequent experiments, different resource and buffer
amounts will be analyzed.
4.4. Effects of the number of containers (c) and

eMBB buffer size (K)
This scenario evaluates the impact of varying the number

of containers (c) concomitantly with the buffer size for
eMBB users (K). In both Figs. 12a-12b, it is noticeable that
the number of containers has a significant impact on the
availability for both user service classes, showing higher
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Figure 11: Power Consumption under Different URLLC (𝜇𝑈 )
and eMBB (𝜇𝐸) Service Rates.

availability for environments with a greater number of con-
tainers, represented by the configurations where 𝑐 = 12 (red
and orange lines), followed by 𝑐 = 8 (green and yellow).
For instance, in Fig. 12a at 𝜆𝑈 = 10, the availability for the
configurations with 𝑐 = 8 is approximately 20% whereas for
the configurations with 𝑐 = 12 is around 69%, i.e., a gap of
almost 49%. On the other hand, the tested buffer alternatives
had little impact on the eMBB availability, indicating that
it would require much larger values than the adopted ones
(𝐾 = 16 and 𝐾 = 24). However, this is not feasible since
the buffer will also impact the response time, which will be
further evaluated. As for the system’s URLLC availability
(Fig. 12b), the analysis follows the same pattern for the
eMBB, i.e., the container number drastically impacts the
availability whereas the eMBB buffer sizes had barely any
effect, resulting in overlapping pair of curves: light/dark
blue, green/yellow, and red/orange.

In Fig. 13a, a larger buffer size for the eMBB service
category also increases in the proportional response time.
This is due to the number of service requests ahead of each
newly admitted eMBB request, which has to wait in queue.
On the other hand, a greater number of available containers
also implies a shorter queue time, reducing the contribution
of this component to the response time. Once again, it can be
observed that undersizing the number of containers can ren-
der the service unfeasible for lower-priority users, resulting
in large response times, e.g., for configurations where 𝑐 = 4
(light and dark blue lines), these particular configurations
are suited for the Smart Office service, which requires a
maximum latency of 10 ms [33], only when 𝜆𝑈 = 2.5. In
contrast, the remaining configurations under evaluation can
accommodate this application with a 𝜆𝑈 as high as 12.5.

Similar to the URLLC availability in Fig. 12a, varying
the eMBB buffer size has also little impact on the URLLC
response time in Fig. 13b. In other words, the response
time is solely impacted by the variation in the number of
containers. Only system configurations with 𝑐 = 8 and
𝑐 = 12 are capable of serving Robotics services, because
even for 𝜆𝑈 = 2.5, which is the smallest evaluated in the
experiment, configurations with 𝑐 = 4 presented a response

time greater than 1 ms. Despite this, the configurations
with 𝑐 = 4 presented a response time of less than 2 ms
for all evaluated 𝜆𝑈 , proving to be capable of serving the
Smart Transportation Systems service that allows latencies
between 10 and 100 ms [2]. A particularity can be found on
the leftmost part of this figure, where the curves with 𝑐 = 8
(green and yellow lines) and 𝑐 = 12 (red and orange lines)
first decrease the response time, and, in the case of 𝑐 = 8
it rises again, reaching the same initial value at 𝜆𝑈 = 25.
This is likely due to the container setup time, which is either
serving eMBB requests or powered off, considering the low
URLLC demand from 𝜆𝑈 = 2.5 until 𝜆𝑈 = 10. On the other
hand, as the URLLC arrival rate increases, a decrease in
the response time of service requests can be observed. This
happens since more containers become available, reducing
the waiting time in relation to the container setup delay.

As opposed to the response time, a higher amount of con-
tainers inevitably implies a higher energy consumption (Fig.
14). The energy consumption is not exactly proportional to
the increase in the number of containers; for instance, on
𝜆𝑈 = 10, between the blue and green curves, the number
of containers doubles from 4 to 8, but the same does not
occur with the energy consumption that increases by ap-
proximately 70%. This is because the number of containers
being processed also depends on the workload that arrives
in the system, that is, the energy consumption would only
double together with the number of containers if the de-
mand for service was sufficient to occupy all the containers
available in the two configurations. However, there is very
little difference in the energy consumption comparing each
pair of configurations with the same container amounts, i.e.,
different buffer sizes. A larger eMBB buffer results only in
slightly higher energy consumption because more users tend
to wait in the queue. This prevents the container from being
powered off and restarted, resulting in less setup time and
more time in processing, consuming more energy.
4.5. Effects of the number of containers (c) and

URLLC buffer size (k)
This section evaluates the impact of the number of

containers (c) along with the URLLC buffer size (k). With
regards to the Availability (Figs. 15a-15b) we have very
similar observations as those conducted in the previous
scenario. However, in Fig. 15a it is noticeable that there is an
inversion in the order of the curves (from the most to the least
available), which is clearly shown by comparing the curves
with 𝑐 = 12 (red and orange). In this case, the red curve,
which has fewer URLLC buffer positions (𝑘 = 16) presents
a greater eMBB availability than the orange (𝑘 = 24).
This happens because as more URLLC requests are stored,
there is a guarantee that they will be serviced instead of
dropped, as it happens with the curve with fewer URLLC
buffer positions. Thus, the overall URLLC load increases,
pressuring down the eMBB availability. Conversely, in Fig.
15b, the orange curve (𝑘 = 24) displays a greater availability
than the red one (𝑘 = 16), which was expected since the
evaluated metric is the URLLC Availability, i.e., a larger
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(b) URLLC.
Figure 12: Availability under Different Amounts of Containers (𝑐) and eMBB Buffer Sizes (𝐾).
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(a) eMBB.
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(b) URLLC.
Figure 13: Response Time under Different Amounts of Containers (𝑐) and eMBB Buffer Sizes (𝐾).
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Figure 14: Power Consumption under Different Amounts of
Containers (𝑐) and eMBB Buffer Sizes (𝐾).

URLLC buffer size enhances the URLLC availability, such
that when the sum of the arrival rates for both service
categories approaches the total processing capacity, a larger
buffer size implies greater availability.

Regarding the response times depicted in Figs. 16a-16b,
it is evident that the larger URLLC buffer size exerts a
significant negative impact on both the eMBB and URLLC

response times. However, this impact can be alleviated by
increasing the total number of containers, as presented in
the curves for both figures. At the leftmost part of Fig. 16a
(𝜆𝑈 = 2.5), the eMBB response time remains below 10 ms
for all tested configurations, albeit with varying growth rates.
For instance, the curves corresponding to 𝑐 = 4 exhibit ex-
ponential growth, while those associated with 𝑐 = 12 display
linear increase. Consequently, higher container quantities
result in improved eMBB response times, particularly under
higher URLLC loads approaching system capacity. In this
scenario, it becomes evident that system configurations with
𝑐 = 8 and 𝑐 = 12 can effectively fulfill the demands of
Virtual and Augmented Reality services, which necessitate
a latency of up to 8 milliseconds [34], for 𝜆𝑈 as high as 10,
whereas configurations with 𝑐 = 4 can only accommodate
these services for lambda values equal to 2.5.

Conversely, larger URLLC buffers lead to degraded
eMBB response times, as evidenced by the curves with
𝑘 = 24 presenting higher response times compared to
their respective counterparts with 𝑘 = 16. Notably, a
distinct characteristic observed in this experiment is that
starting from 𝜆𝑈 = 17.5 and beyond, the light blue curve
(representing 𝑐 = 4 and 𝑘 = 24) assumes unfeasible values
(too high magnitude). This occurrence is likely attributed to
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(b) URLLC.
Figure 15: Availability under Different Amounts of Containers (𝑐) and URLLC Buffer Sizes (𝑘).

2.5 5 7.5 10 12.5 15 17.5 20 22.5 25
URLLC Arrival Rate (6

U
 Requests/ms)

100

101

102

103

104

105

106

107

108

E
M

B
B

 R
es

po
ns

e 
T

im
e 

(m
s) C=4, k=16

C=4, k=24
C=8, k=16
C=8, k=24
C=12, k=16
C=12, k=24

(a) eMBB.

2.5 5 7.5 10 12.5 15 17.5 20 22.5 25
URLLC Arrival Rate (6

U
 Requests/ms)

1.0

1.5

2.0

2.5

3.0

U
R

LL
C

 R
es

po
ns

e 
T

im
e 

(m
s) C=4, k=16

C=4, k=24
C=8, k=16
C=8, k=24
C=12, k=16
C=12, k=24

(b) URLLC.
Figure 16: Response Time under Different Amounts of Containers (𝑐) and URLLC Buffer Sizes (𝑘).

the intensified pressure from URLLC arrivals coupled with
the adoption of a large buffer size, resulting in an excessively
large eMBB response time.

In Fig. 16b, the range of possible URLLC response
time values is considerably lower than that of the previous
experiment, owing to the higher priority accorded to URLLC
requests. Nevertheless, there is considerable variation in
the behavior of each curve. Some curves exhibit strictly
ascending behavior, while others display both descending
and ascending phases. Furthermore, one curve exhibits a
strictly descending pattern. Nonetheless, the order of curves
in terms of URLLC response time remains consistent with
the previous experiment (Fig. 16a). It is worth noting that,
for a larger interval of 𝜆𝑈 , the curves are expected to exhibit
similar behavior with minor shifts. Regarding the light and
dark blue curves, it can be inferred that the system capacity is
swiftly reached, resulting in higher URLLC response times
as the buffer becomes more heavily utilized. Nonetheless,
even in these cases, the URLLC response time remains at
an acceptable level of 3 ms, which is highly suitable for
the majority of URLLC applications that typically require
response times ranging from up to 10 ms, such as Factory
Automation [2]. As for the strictly descending curve (in
red), it is likely that the URLLC response time decreases

because new URLLC arrivals are promptly processed by
containers that were previously in the setup mode, thereby
bypassing the setup delay. Additionally, the smaller buffer
size (𝑘 = 16) leads to fewer requests in the waiting queue,
thereby contributing to a lower overall URLLC response
time compared to configurations with larger buffer sizes,
such as 𝑘 = 24 (represented by the orange line).

Regarding the energy consumption illustrated in Fig.
17 within this scenario, a similar observation can be made
compared to the previous experiment. It is evident that
an increased number of containers leads to higher energy
consumption, aligning with our expectations. Moreover, for
the majority of the evaluation frame, the size of the URLLC
buffer exhibits minimal influence on this particular perfor-
mance metric. This is evident from the overlapping pair of
curves, particularly noticeable for low URLLC arrival rates.
This outcome was anticipated since the buffered requests do
not consume resources while in the queue. Thus, in most
cases, the buffer size does not significantly impact the power
consumption. However, a slight increase in energy consump-
tion is observed when the system approaches full capacity
and utilizes more buffer positions. This phenomenon occurs
due to the containers spending a greater amount of time
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in a processing state, resulting in reduced periods of being
powered off or undergoing restart procedures.
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Figure 17: Power Consumption under Different Amounts of
Containers (𝑐) and URLLC Buffer Sizes (𝑘).

5. Conclusions and Future Directions
This work investigated the interactions between MEC,

NFV, and dynamic virtual resource allocation within the
environment of 5G networks accommodating both URLLC
and eMBB. The framework employs a CTMC-based model
to describe the the dynamics of virtual resource allocation,
guided by three performance metrics. In order to yield the
model more practical, resource failures, service prioritiza-
tion, and setup (repair) times were integrated, since they can
incur significant impacts on the 5G applications’ require-
ments. The resulting model provides valuable insights on
how the MEC-NFV 5G network handles different service
categories, applying service prioritization to efficiently al-
locate processing resources.

The proposed model can assist network operators in ef-
fectively dimensioning edge nodes to ensure the coexistence
of URLLC and eMBB services. Some of our key findings
include evidence that higher eMBB arrival rates lead to
decreased availability and increased response times, while
URLLC availability remains relatively unaffected. Container
setup and failure rates significantly influence both availabil-
ity and response times, with faster setup rates improving
availability and reducing response times. The availability of
URLLC services is primarily affected by URLLC service
rates, while eMBB service rates impact eMBB availability.
The number of containers also plays a critical role, enhanc-
ing both availability and response times, whereas buffer sizes
primarily affect response times. Furthermore, power con-
sumption showed minimal sensitivity to changes in buffer
size while largely affected by the number of containers.

For future work, we advocate for multiobjective ap-
proaches to resource allocation problems within the MEC-
NFV framework, with a particular focus on supporting the
coexistence of eMBB and URLLC services. Additionally,
efforts should be directed toward developing cost-effective
strategies to optimize resource allocation further, addressing
the evolving needs of 5G networks. Developing Artificial

Intelligence (AI)-based solutions is a promising and natural
next step, as the next generation of mobile communications
is designed to be AI-native. Furthermore, since the models in
the literature do not encompass all the features presented in
our proposed model, a numerical comparative analysis could
be conducted to highlight the semantic differences between
our model, existing models, and real systems. Finally, future
studies could extend the analytical model to include mMTC
in the coexistence analysis or adopt alternative formalisms,
such as Coloured Petri Nets (CPN), to address the potential
high complexity of the Markov chain-based model.
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